

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 3, No. 2, 2023

14

Design and Implementation of a Visualized Operating System

Simulation Using Java Multithreading

Harper Robinson1,Matthew Walker2

Indiana University of Pennsylvania-Main Campus1,Indiana University of Pennsylvania-Main

Campus2

Haeper000@gmail.com1,matthew@gmail.com2

Abstract:

The design and implementation of a simulation of the operating system provide insight into the

fundamental working principles of computer operating systems and their various functional

modules. By utilizing a visual interface, users can rapidly acquire basic theoretical knowledge of

operating systems and understand the scheduling processes. As a program responsible for managing

a computer's hardware and software resources, an operating system addresses issues such as memory

management, process management, storage management, and device management. Employing a

multi-threaded Java programming approach, the simulation system manages operating system

transactions through coordinated thread management and visually displays various management

functions using Java Swing components. This simulation system not only enhances users' interest in

learning about operating systems but also offers a solution for visually demonstrating each function

of the operating system.

Keywords:

Operating system; visual display; simulation design; Java language; multithreading.

1. Introduction

Computer operating system is important to learn computer professional knowledge theory part. In the

operating system process scheduling, memory allocation, file read and disk management algorithm

and the design idea is the essence of computer program design concept. Knowledge of computer

operating system theory study cannot rely on interpretation and problem sets, each functional

module of visual image display can help learners understand the design principle and operation

mode, greatly improve the efficiency of learning [1]. The traditional operating system simulation

learning software design implementation, some of these modules separately restricted to a particular

module algorithm independently, learners in the process of learning can't perceive the internal

relations of various modules, couldn't reflect the operating system process continuity and systemic.

Java language as a cross-platform design programming language, the use of the JVM running design

application. Integrated visualization development component, the corresponding Java itself is good

support for multithreaded programming, this article through to the various functions of the operating

system decomposition and design in detail, using the Java language as the programming language,

the operating system process management, storage management, equipment management, file

management four modules are simulated and user interface design, design and implement a multi-

threaded simulation single-user operating system, this system friendly interface, the learners can

learn through interaction to master the theoretical knowledge of the operating system and the

corresponding module design principle method [2].

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 3, No. 2, 2023

15

1.1. File Management and User Interface

File management and user interface refers to a single user disk file management, including

document logical structure, physical structure, directory, recovery disk allocation, file protection

and the realization of the user interface.

Document logical structure uses the flow structure, as a result of the simulation system focused

mainly on the logical structure of the file, system files can be used in a text file. The file structure is

used in the simulation of disk can also be read through the data stream, according to the structure of

the data stream setup disk the size of the plate and each disk blocks. Combining with the

characteristics of real disk storage and define the 0, 1 piece for file allocation table, 2 pieces is

defined as the root directory, directory entry visual requirements, the rest of the disk storage

directories and files, directory structure USES the directory tree structure, the concrete contents are

shown in table 1. In order to facilitate design recovery disk allocation algorithm, files on disk blocks

is exclusive.

Table 1. Directory entry byte definition

Table of contents
Number of

bytes
remarks

Each directory entry 8

Directory name or file

name
3

Extension 1
The extension of the executable needs to be

defined

Directory and file

attributes
1

Starting plate number 1

File length 2 Directory has no length

Disk allocation can refer to MS-DOS fat (file allocation table) allocation method, using link

structure. The system uses file allocation table to record the usage of disk space and the pointer of

link structure. Each item in the file allocation table should be defined according to the fixed byte

size, and the number of items in the allocation table should be calculated according to the number of

disk blocks. The file allocation table is stored on the 0 and 1 blocks in the disk space.

When the user operates the simulation operating system, it needs to complete through the

corresponding interface. Based on the interactive and friendly design concept, the system should

design a visual interface of commands that can be typed from the keyboard. In this module, the disk

directory and disk usage should be visually displayed on the interface of the simulation operating

system. Users can see the directory structure of the disk and the occupancy of disk blocks through

data or intuitive graphics.

1.2. Storage Management and Device Management

In the storage management part, array can be used to simulate the memory space, which mainly

completes the allocation and recovery of memory space and storage protection.

In the simulation system, the memory is divided into two parts: system area and user area. The

system area stores the process control block (PCB) and memory allocation table. The user area is

used to store the running process. The user area can define the byte size of the user area according

to the simulation requirements. The dynamic partition storage management mode is adopted in the

storage management. The memory usage in this module should be displayed in a visual form on the

interface of the simulation operating system, and the allocation of memory area can be marked in

different colors [3].

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 3, No. 2, 2023

16

Equipment management mainly includes equipment distribution and recycling. A variety of

exclusive devices can be set up in the simulation system. The number of devices is different

according to the type, and different entities of the same device can be considered as the same. The

system uses deadlock prevention method to deal with the deadlock caused by the application of

exclusive device. The usage of the devices in this module should be displayed in the interface of the

simulation operating system in a visual form. You can see whether each device is used, which

process is used, and which processes are waiting for the device.

1.3. Process Management

Process management is the brain of the whole simulation operating system. Files, storage and

devices are scheduled by process. The function of process management mainly includes process

scheduling, process creation and revocation, process blocking and wake-up, and the realization of

interrupt. From the simulation module, the CPU (central processing) is the main part Unit) function

simulation, main register function simulation, interrupt simulation, clock simulation, process control

simulation, process scheduling simulation, etc.

CPU simulation is mainly responsible for interpreting the instructions in the "executable file", as

shown in Table 2.

Table 2. Executable file definition

Executable file

content
definition

Y=? Assign a single digit to y

Y++ Y plus 1

Y-- Y minus 1

#??
The first? Is the device, and the second? Is a one digit integer

indicating the time of using the device

end End of file

file length 2

The CPU can only interpret the instructions in the instruction register IR (instruction register). When

a process is running, the corresponding instructions should be stored in the simulated "instruction

register IR" according to the execution position of the process. For several registers used by the core:

program status register PSW (program status word), instruction register IR, program counter PC

(program counter), data buffer register DR (data register), global variable or array simulation can be

used.

Table 3. Interrupt handling

Interrupt type Treatment method remarks

End of program (interrupt

formed by executing instruction
end, soft interrupt)

Write the file pathname and

calculated value to the file, cancel the
process, and schedule the process.

Time slice rotation

The CPU of the running process is

saved in the process control block, and
then the process is scheduled

CPU

field: values of

each
register

I / O interrupt (device I / O)

Wake up the process of input and
output completion, and wait for another

process of the device to wake up。

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 3, No. 2, 2023

17

Interrupt simulation is carried out by detecting the defined values in the PSW array of program status

registers. Before executing the instruction, the array of program status registers is checked to

determine whether there is an interrupt. If there is an interrupt, the interrupt processing is performed

first, and then the interpretation instruction is run. Instruction interpretation and interrupt running

should be completed in the thread. The types and processing methods of interrupts are shown in

Table 3.

There are two clock variables in the system: absolute clock and relative clock. The clock can be

simulated with global variables. The absolute clock simulates the running time of the entire

operating system. The relative clock is used as the time slice count in the process of process

execution. A fixed value is set at the beginning of process scheduling. With the operation of the

absolute clock, the corresponding value will be accumulated and automatically reduced. When the

value is 0, the corresponding value will be automatically reduced The interrupt operation of time

slice rotation is issued.

Process control block (PCB) simulation mainly includes process identifier, main register group,

process status, blocking reason, etc. The process control block consists of three queues: blank

queue, ready queue and blocking queue. There is only one running process and the system starts

with a blank queue.

The main functions of process scheduling are as follows: when the time count of time slice is 0, the

field (register group) of the running process is saved in the process control block of the process, and

then a process is selected from the ready queue, and the contents of each register recorded in the

process control block of the process are restored to each register of the CPU 。In order to ensure

the normal operation of the system, we should simulate the idle wandering

process similar to windows. When the thread queue is empty, the system calls the process to run.

Ready to call the process when it is ready.

The visual interface should display the system clock; display the process ID of running process,

running instructions, intermediate results, relative clock, register content; process ID in ready

queue; process ID in blocking queue, etc.

1.4. User Interface

The user interface mainly receives commands typed from the keyboard through visualization. It can

complete the basic functions of the operating system by defining command keywords, such as

creating files, deleting files, displaying files, copying files, editing files, establishing directories,

deleting empty directories, running executable files (creating processes), etc.

2. System Detailed Design

2.1. Module Division

According to the requirements, the whole system is divided into five modules, as shown in Figure 1,

which are bus module, CPU module, memory module, device module and disk module. Each module

creates a class to realize its function. The data communication and corresponding algorithm flow

control are carried out among the modules through functions.

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 3, No. 2, 2023

18

CPU module

Bus module

Device module

Representative: internal

Representative:

Figure 1. System structure

The Java language is used to decompose each module, as shown in Table 4:

Table 4. Simulation program design

Class name Function

Cpu Class Function of analog CPU

Sys Class Function of analog bus

Allocation Class Functions of analog devices

Memory Class Function of analog memory

Index Class Function of analog disk

The bus simulates sys class to create CPU simulation CPU class, device simulation allocation class,

memory simulation memory class and disk simulation index class to initialize them. Each class only

creates an object once. The internal interface is provided in the class of CPU simulation, device

simulation and memory simulation, and the communication of each module is coordinated through

bus simulation. In CPU simulation, device simulation and bus simulation, threads are added to drive

them to make the three modules run independently. In disk simulation and CPU simulation,

providing external user interface is mainly to operate files and directories and create processes.

After each module has been successfully implemented, it is integrated and controlled by sys class

(bus simulation).

2.2. Module Execution Relationship

Thread is added to the bus simulation module as the whole driver of the system. The threads of CPU

simulation module and device simulation module are added into the bus simulation module. As the

entrance of the whole system, bus simulation module drives the execution of CPU simulation

module, device simulation module and memory simulation module.

When the simulation system starts to run, the system thread is opened to drive the system time. Open

the thread of CPU simulation module and device simulation module. The CPU simulates the thread

of the module to execute the interrupt and explain instruction cycle for 1 second, and the thread of

the device executes the loop for 3 seconds to drive the detection of waiting queue once. Each thread

runs independently to ensure that the whole simulation system is always running.

Disk

module

Memory module

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 3, No. 2, 2023

19

The simulation of file system first simulates a 64 * 128 two-dimensional array, and initializes five

root directories in the array. When creating files or subdirectories, first find the root directory and

create it under the root directory. When writing the contents of the file (operation instructions include:

create file, create directory, delete file, delete directory, display file, edit file, copy file), first find

the directory entry of the file, find the starting address of the file from the directory entry for

writing. When writing a data block, find the data block linked to this file in the file allocation table

of Block 0 and block 1, and then At the end, write it down disk.txt Analog disk.

The simulation of the process first creates the process, receives the file path name and file name,

which is received by the bus and then sent to the CPU simulation module. The CPU simulation

module transfers the file path name and file name to the memory simulation module, so that the

memory simulation module creates the process. When creating the memory, it first detects the

available memory space, and uses the first adaptation algorithm to allocate the dynamic memory

and read the data from the disk According to and write to the memory simulation module, create the

initialization PCB, add the PCB ready queue in the system area in the memory, and hand it to the

CPU simulation module for execution.

The thread of CPU simulation module detects the ready queue every 1 second. After detecting, the

information of PCB is loaded into each register of CPU simulation module to detect interrupt and

interpret program. The detection contents are divided into two situations: when no device is used in

the process, the instructions are executed in sequence; when the time slice arrives, the values in

registers are saved to the PCB, and the PCB is added to the ready queue. If the time slice does not

arrive and the end instruction is encountered, the execution result is transferred to the memory, and

then written back to the out file of Disk C directory from the internal memory to destroy the PCB

and memory; when the device is used in the process, every If the instruction of the device is

checked, the values in registers will be saved to the PCB, and the PCB will be added to the waiting

queue. The device manager will perform the read operation.

The simulation of interrupt is as follows: the interpretation and execution of an instruction will

change the value of PSW (program status register) with the arrival of time slice and the appearance

of end instruction, or the appearance of! B3 instruction. If there is no above situation, the value of

PSW (program status register) will remain unchanged. During the instruction interpretation and

execution, interrupt control can be carried out first, PSW is detected to make it respond, and then the

instruction is interpreted to modify PSW. In this way, the CPU simulation module can run in

executing instructions and responding to interrupts. The run() instruction is as follows:

public void run(){ // Driver of CPU execution

while(a==1){

try{

Thread.currentThread().sleep(1000); // Thread sleep for one second

}catch(InterruptedException e){}; interrupt();

 // Interrupt control

dictite(); // Instruction interpretation

}

}

The operation of the device simulation module first detects the PCB blocking queue in memory

every 3 seconds. If the queue is not empty, the first PCB will be out of the queue, read its

information, judge the device required by the process and the running time of the device, put it into

the corresponding device waiting queue, and scan 5 device waiting queues at the same time.

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 3, No. 2, 2023

20

If there is a process, execute it. After the execution, save the PCB and add it to the PCB ready queue

in memory, otherwise continue scanning.

3. System Testing

After the coding of each class is completed, the corresponding visual interface needs to be designed

for visual display. The system test part mainly takes the visualization interface display as an example.

After entering the main interface, click the start menu and select process management to enter the

following interface:

Figure 2. Process management interface

Table 5 shows the description of each part of the visualization interface.

Table 5. display description of process management visual interface

Interface display Display content explanation remarks

system time display system time

Running process Displays the name of the running process
Now in the process

of loitering x=1

Time slice Displays the time of the time slice

Register PC
Displays the subscript of the first address of

the instruction in memory

Register IR Displays the instruction being executed

Register DR Intermediate result of instruction running

Register PSW Displays the label of the interrupt

Ready queue Displays the process name of the ready queue Sequential display

Executing

instructions
Displays the instruction being executed

Execution process

intermediate results
Intermediate result of instruction running

Process results Process results

Input file path Input file path, such as: C:

Enter file name Input file name, such as: ABC

Click the OK button Create process

Waiting in queue
Displays the name of the process waiting for

the queue
Sequential display

Memory currently

used
*%Display scale, progress bar auxiliary

display

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 3, No. 2, 2023

21

In the file view, you can see the directory tree structure of the folder, and open the handle to display

the hierarchical results of the file directory. In the system disk usage box: the upper part of the box

shows the size of the entire disk space of 8192b, of which the available space is 7232b, and the other

space is used by the system. The middle part is the usage of five root directories. The usage

percentage of each root directory is: Usage / total disk size 7232b. The percentage changes with the

change of the file capacity in this directory. The following section shows the usage view of each

disk block. There are 128 disk blocks, where 'U' indicates that the space of this disk block has been

used, and 'n' indicates that the space of this disk block is empty.

In the user operation area of the interface, the following instructions can be executed: create file:

create; edit file: edit; create directory: MKDIR; display file: type; copy file: copy; delete file: delete;

delete empty directory: rmdir.

The source file path is defined as follows: the format is "C:" where C: is the root directory, ABC is

the first level directory, and DSA is the second level directory. The name of each level directory is

three bytes.

Name of file / directory (when creating a new directory): the name of the file / directory mainly

written (when creating a new directory). The format is as follows: "ass", where ass is the file or

name, and the name of each level of file / directory is three bytes.

Extension name (directory has no extension): the extension of executable file is e, the extension of

text file is t, and the extension of directory is not. File / directory (when creating a new directory)

attribute: there are two kinds of attributes: "read-only" and "read-write", which can be selected

according to different situations. Target file path: it can only be used in copy file operation. It

mainly writes to the target file. The usage is the same as the source file path. File name: only used in

copy file operation. The name of the target file is mainly written. The usage is the same as the source

file path.

4. Conclusion

In this paper, through the analysis of the structure of the computer operating system, the functional

requirements design, system detailed design, system testing and so on are carried out. The process

management, storage management, device management, file management and user interface are

coded with Java programming language. A simulation single user operating system using

multithreading is realized. The system can not only demonstrate the operation principle of specific

functional modules, but also reflect the internal relationship of different functional modules, which

is helpful to the system integrity Master the concept and principle of operating system, solve the

problem of incoherent knowledge of each module and poor visualization effect in existing operating

system learning [4]. The simulation system is limited to the number of existing modules is not

enough, other interface functions in the operating system have not been reflected in the simulation

system, the platform interface can be further beautified, combined with the current online learning

needs, network, mobile terminal become the next step of the system work objectives.

References

[1] Sun Zengguo, Lu fanbi, Chen Junbiao, Yang Le. Development of operating system simulation

experiment platform based on C# language [J]. Software Guide (Education Technology), 2016,15 (11):

85-88.

[2] Zhu Qi. Design of network teaching platform based on visual learning supervision [J]. Automation and
instrumentation, 2019 (08): 29-32.

[3] Ma Honglin, Yan Lei, Yu Junwei. Exploration and practice of "learning centered" reform of operating
system teaching paradigm [J]. Computer education, 2020 (06): 119-123.

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 3, No. 2, 2023

22

[4] Wang Shuyan. Design of Linux experimental teaching system based on virtual simulation platform [J].

Science and technology information, 2018,16 (33): 5 + 7.

	Haeper000@gmail.com1,matthew@gmail.com2
	Abstract:
	The design and implementation of a simulation of the operating system provide insight into the fundamental working principles of computer operating systems and their various functional modules. By utilizing a visual interface, users can rapidly acquir...
	Keywords:
	1. Introduction
	1.1. File Management and User Interface
	1.2. Storage Management and Device Management
	1.3. Process Management
	1.4. User Interface

	2. System Detailed Design
	2.1. Module Division
	2.2. Module Execution Relationship

	3. System Testing
	4. Conclusion
	References

