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Abstract:
With the rapid development of artificial intelligence technologies, Large Language Models (LLMs) have
demonstrated exceptional capabilities in language understanding and generation, becoming a central focus
in the field of Natural Language Processing (NLP). This paper systematically reviews the fundamental
theories and key technical principles of LLMs, with an emphasis on Transformer architectures and self-
attention mechanisms. It further analyzes major pretraining methods such as masked language modeling and
causal language modeling, and discusses the critical role of fine-tuning and alignment techniques in
practical applications. In addition, it introduces parameter expansion and compression strategies, inference
optimization methods, and recent advances in enhancing safety and robustness. Finally, the paper explores
the future trends of LLMs in multimodal integration, personalized intelligence, and autonomous agent
development, and identifies the major efficiency, robustness, and ethical challenges ahead. This review aims
to provide a systematic theoretical reference and technical guide for researchers and practitioners, promoting
sustained innovation and application expansion of LLM technologies.
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1. Introduction
With In recent years, with the rapid development of artificial intelligence, Large Language Models (LLMs)
have become one of the core research directions in Natural Language Processing (NLP). By conducting self-
supervised pretraining on massive text corpora, LLMs have demonstrated outstanding capabilities in
language understanding and generation, achieving unprecedented performance across various downstream
tasks. The widespread application of the Transformer architecture, in particular, has enabled substantial
expansion of model scale, driving advancements in applications such as intelligent dialogue, automatic
programming, and complex reasoning [1].

The rise of LLMs is attributed not only to algorithmic and hardware advancements but also to the
coordinated evolution of pretraining methods, fine-tuning techniques, inference optimization, and model
alignment. This review systematically outlines the technical principles of LLMs, covering basic theories,
pretraining and fine-tuning methods, inference optimization strategies, and future challenges, aiming to
provide researchers and engineering practitioners with a clear theoretical framework and technical guidance.
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2. Fundamental Theories and Technical Principles
The development of LLMs is fundamentally supported by deep neural network theories. Early NLP methods
primarily relied on Bag-of-Words models and statistical language models, but these approaches struggled to
capture complex linguistic structures and semantic associations. Later, distributed representations, such as
Word2Vec and GloVe [2], partially addressed these limitations. With the rise of deep learning, Recurrent
Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks became mainstream, enabling
the modeling of variable-length sequential data and temporal dependencies [3]. However, RNN-based
models faced issues like vanishing gradients and computational bottlenecks, limiting their scalability.

The introduction of the Transformer architecture marked a fundamental shift in sequence modeling.
Transformers are entirely based on self-attention mechanisms, enabling each input position to establish
global dependencies efficiently without relying on recursion [4]. The encoder-decoder structure, composed
of stacked self-attention modules and feed-forward networks, greatly enhances model expressiveness and
training efficiency. The multi-head attention mechanism further enables learning diverse relational patterns
across different subspaces, enhancing the modeling of complex linguistic phenomena.

On top of the Transformer architecture, pretraining language models typically adopt two main objectives:
Masked Language Modeling (MLM) and Causal Language Modeling (CLM) [5]. MLM strategies, used in
models like BERT and RoBERTa, mask random portions of the input and train the model to predict the
masked tokens, encouraging deep bidirectional contextual representation learning. In contrast, CLM
strategies, adopted by the GPT series, train the model to predict the next token based only on past context,
making them well-suited for generation tasks.

Studies have shown that as model parameters, training data volume, and computational resources scale up,
model performance exhibits predictable improvements, known as scaling laws [6]. This finding has driven
the development of ever-larger models such as GPT-3 by OpenAI, PaLM by Google, and LLaMA by Meta
[7]. These large models not only achieve breakthroughs on benchmark tasks but also exhibit emerging
abilities like zero-shot learning, few-shot learning, and in-context learning.

However, merely scaling up model size encounters diminishing returns and sharply increases training and
inference costs. Consequently, research has shifted toward more efficient pretraining methods, multitask and
multimodal learning frameworks, and parameter-efficient fine-tuning (PEFT) techniques [8]. The
Transformer and its derivative architectures remain the theoretical cornerstone for the ongoing evolution of
LLMs and serve as the foundation for exploring more intelligent and reliable language models in the future.

3. Development of Pretraining Methods
Pretraining serves as the core phase in the training of large language models and has evolved from single-
objective tasks to multitask and multimodal approaches. Initially, pretraining primarily relied on simple self-
supervised tasks, such as the Masked Language Modeling (MLM) objective proposed by BERT [5]. By
conducting MLM training on large-scale unlabeled text corpora, models were able to learn rich contextual
semantic information, providing powerful feature representations for downstream tasks. BERT and its
improved version, RoBERTa, further enhanced pretraining performance by expanding the training data scale
and removing the Next Sentence Prediction task [9].

Unlike the BERT series, the GPT series models employ a Causal Language Modeling (CLM) strategy,
emphasizing unidirectional sequence generation [10]. This design enables GPT models to excel at
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generation tasks, producing coherent and logically consistent long texts. GPT-2 first demonstrated that
massive autoregressive pretraining alone could enable zero-shot or few-shot transfer to multiple downstream
tasks. GPT-3 significantly expanded the parameter scale to 175 billion, showcasing new capabilities such as
in-context learning [7].

In terms of pretraining objectives, new task designs such as Span Prediction (e.g., SpanBERT) and
Permutation Language Modeling (e.g., XLNet) have emerged. These methods aim to enhance the model's
understanding of sentence-level, paragraph-level, and even document-level structures [11]. For example,
XLNet captures long-distance dependencies more effectively by learning all possible permutations of token
sequences.

As pretraining methods evolved, multitask learning became an important approach to improving model
generalization. T5 (Text-to-Text Transfer Transformer) unified all tasks into a text-to-text format,
encompassing classification, question answering, summarization, and more within a single modeling
framework [12]. This approach not only simplified downstream adaptation but also significantly enhanced
task transferability. Similarly, UL2 (Unifying Language Learning Paradigms) proposed a framework that
combines various pretraining objectives, including MLM, CLM, and Span Infilling, to further boost
comprehensive performance [13].

Beyond unimodal text pretraining, multimodal pretraining has become a prominent research direction. CLIP
(Contrastive Language-Image Pretraining) employed contrastive learning to embed images and texts into the
same vector space, enabling cross-modal understanding and generation [10]. Models like ALIGN and
Florence expanded the scale and coverage of multimodal datasets, allowing models to simultaneously
process text, images, and audio. Multimodal large models such as Flamingo and Gemini have further
advanced capabilities in visual reasoning, cross-modal retrieval, and more, demonstrating the early potential
of Artificial General Intelligence (AGI) [14].

Overall, the development of pretraining methods can be summarized along three main lines: designing
richer self-supervised tasks to enhance language understanding and generation, employing multitask and
unified modeling to improve generalization, and transcending single-modality boundaries to build models
that integrate multiple forms of perception. These technological advances have laid a solid foundation for
the success of large language models across diverse application scenarios.

4. Fine-tuning and Alignment Techniques
Although pretraining grants large language models powerful general capabilities, fine-tuning and alignment
processes are essential to optimize their performance for specific application scenarios. Traditional
supervised fine-tuning typically involves training on small-scale, high-quality labeled datasets to adjust
model parameters for specific tasks. However, as model sizes increase, simple supervised fine-tuning often
fails to fully exploit the potential of pretrained models and is prone to overfitting and catastrophic forgetting
[15].

To better align model outputs with human expectations, Reinforcement Learning with Human Feedback
(RLHF) was introduced and widely applied in models like GPT-3.5 and GPT-4 [11]. RLHF consists of three
main steps: first, supervised fine-tuning (SFT) is performed on high-quality data; second, a reward model
(RM) is trained to evaluate output quality; third, reinforcement learning algorithms such as Proximal Policy
Optimization (PPO) are used to optimize the language model to maximize the reward signal. This process
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significantly improves model performance in dialogue systems by enhancing the coherence, relevance, and
safety of generated texts.

In addition to RLHF, Instruction Fine-tuning has become an important technique. Research exemplified by
InstructGPT demonstrates that fine-tuning on large-scale human-written instruction datasets enables models
to better understand and execute natural language instructions [16]. This approach not only improves
controllability but also enhances zero-shot and few-shot generalization abilities, promoting the development
of instruction-centered human-computer interaction paradigms.

To reduce the computational cost of fine-tuning large models, Parameter-Efficient Fine-Tuning (PEFT)
methods have emerged. Techniques such as Adapters, LoRA (Low-Rank Adaptation), and Prefix Tuning
involve updating only a small number of additional parameters without modifying the entire model,
significantly reducing fine-tuning's computational and storage overhead [17]. LoRA, in particular, applies
low-rank decomposition to weight matrices during fine-tuning, enabling large models to adapt to new tasks
at low cost and has become a mainstream industrial solution.

Alignment techniques also encompass safety and ethical alignment. For example, introducing refusal
mechanisms reduces harmful responses to sensitive or illegal queries, and bias mitigation techniques aim to
reduce biases in sensitive attributes such as gender and race [18]. Emerging approaches like Constitutional
AI attempt to embed rule-based systems into model reasoning and generation processes, representing a
significant trend in alignment research.

Overall, fine-tuning and alignment are not only key steps for adapting pretrained large models to practical
tasks but also crucial for improving model safety, reliability, and social acceptability. In the future,
optimizing fine-tuning efficiency, enhancing alignment quality, and achieving unified alignment in
multimodal, multilingual, and multitask environments will remain important research directions.

5. Parameter Expansion and Compression Techniques
As large language models continue to scale up, with parameter counts growing from hundreds of millions to
hundreds of billions, managing model size efficiently while maintaining performance becomes a major
challenge. Early research indicated that coordinated scaling of parameters, data, and compute leads to
systematic performance improvements, a phenomenon known as scaling laws [6]. Models such as OpenAI’s
GPT-3, Google’s PaLM, and Anthropic’s Claude series have achieved remarkable performance through
large-scale expansion. However, the computational and energy costs associated with scaling have driven
extensive research into model compression and efficient modeling methods.

For parameter expansion, model parallelism and data parallelism techniques are widely used. Model
parallelism partitions large models across multiple computing devices, while data parallelism accelerates
training by processing different data batches across devices. Optimizers like ZeRO (Zero Redundancy
Optimizer) further distribute optimization states across devices, significantly reducing memory overhead
[19]. Frameworks such as Megatron-LM and DeepSpeed integrate multiple parallelism strategies,
supporting the training of models with hundreds of billions of parameters and becoming essential tools for
large-scale pretraining.

To lower the inference and deployment costs of large models, various parameter compression techniques
have been developed. Model pruning removes redundant connections or neurons to reduce model size and
computation; knowledge distillation trains smaller models to mimic the outputs of larger models, achieving
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lightweight models [20]. Models like TinyBERT and DistilBERT maintain high accuracy while greatly
reducing inference latency and storage requirements.

Recently, low-rank approximation methods have become a hot topic in parameter compression research.
LoRA (Low-Rank Adaptation) applies low-rank decomposition to weight matrices during fine-tuning,
significantly reducing computational and storage overhead [17]. QLoRA further combines this with
quantization techniques, compressing weight matrices to 4-bit representations to minimize fine-tuning and
inference costs [21]. These methods not only facilitate efficient fine-tuning but also significantly reduce
model size during deployment.

Quantization techniques compress floating-point weights into low-bit integer formats such as INT8 or INT4,
effectively reducing storage needs and inference latency. Methods like GPTQ and AWQ achieve efficient
inference of large models while maintaining accuracy, enabling consumer-grade hardware to run models
with tens of billions of parameters [22].

Additionally, Mixture of Experts (MoE) models propose sparse activation mechanisms, where only a subset
of submodels is activated during each inference step, significantly reducing computational costs. Models
like GShard, Switch Transformer, and GLaM achieve nearly linear growth in inference cost relative to
model size [23]. MoE methods provide a new direction for scaling future ultra-large models.

Overall, parameter expansion and compression techniques form the technical foundation for the sustainable
development of large language models. Future research will continue to focus on maintaining performance
while improving the energy efficiency of training and inference.

6. Inference Optimization and Deployment Strategies
The inference process of large language models involves massive parameters and complex computations,
making inference optimization a critical step for practical deployment. Inference optimization aims to
reduce inference latency, memory footprint, and energy consumption without significantly degrading model
performance, thereby meeting the diverse needs of various application scenarios.

Model quantization is one of the most common inference optimization techniques. By compressing weights
and activations from 32-bit floating-point (FP32) to lower-bit formats such as FP16, INT8, or INT4,
quantization significantly reduces model size and accelerates inference. Post-Training Quantization (PTQ)
and Quantization-Aware Training (QAT) correspond to post-inference and training-time quantization
strategies, respectively, with QAT better preserving model accuracy during compression [24]. Techniques
like LLM.int8, GPTQ, and AWQ leverage advanced quantization strategies to enable inference of billion-
scale models on consumer hardware.

Inference pruning dynamically skips redundant computation units during inference to further reduce
computational costs. Early methods such as Dynamic Sparsity and Block Sparse Attention sparsify attention
computations, effectively speeding up inference for large models [25]. Token Pruning and Layer Skipping
strategies have also been proposed to dynamically adjust the computation path based on the input during
inference, enhancing responsiveness.

Caching and reuse strategies are particularly important in long text generation and continuous dialogue
scenarios. By caching intermediate computation results (such as Key-Value Cache) of previous layers,
repeated computations are avoided, significantly reducing inference latency [26]. Caching mechanisms have
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become key technologies for improving interactive experiences in applications like chatbots and intelligent
assistants that require long-context management.

Parallel and distributed inference techniques are also widely adopted. Techniques like pipeline parallelism,
tensor parallelism, and tensor slicing efficiently distribute inference workloads across multiple devices,
supporting real-time deployment of ultra-large models. Inference acceleration frameworks such as
DeepSpeed-Inference and FasterTransformer integrate multiple optimization methods, including
quantization, pruning, and parallel inference [19].

To adapt to the computational resource constraints of mobile and edge devices, researchers have proposed
edge inference and tiny model distillation methods. By incorporating efficient architecture designs such as
MobileBERT and TinyBERT during pretraining and optimizing through quantization and distillation
afterward, models can achieve satisfactory performance while being suitable for edge deployment [20].

In summary, the continuous development of inference optimization and deployment strategies enables large
language models to achieve efficient inference across servers, personal devices, and edge environments,
greatly expanding their application boundaries. In the future, inference optimization will continue to evolve
toward goals such as lower latency, higher throughput, and lower energy consumption, driving the
widespread adoption of large language models.

7. Safety, Robustness, and Ethical Issues
Although large language models have achieved remarkable progress in natural language processing, they
still face significant challenges in safety, robustness, and ethics. The text generated by LLMs may contain
false information, harmful content, biased expressions, or even be exploited maliciously, severely impacting
their usability and social acceptability. Therefore, enhancing the safety and robustness of LLMs and
ensuring ethical compliance have become indispensable aspects of research and application.

Safety issues mainly include harmful content generation, sensitive information leakage, and adversarial
attacks. LLMs may inadvertently generate violent, pornographic, or hateful content, posing potential risks
[27]. Additionally, sensitive personal information contained in training data may be memorized and leaked
by models, raising serious privacy concerns. To address these issues, researchers have proposed multiple
protection strategies, such as filtering and debiasing training data to reduce exposure to harmful content,
introducing refusal generation mechanisms during inference to proactively block sensitive queries, and
applying differential privacy techniques to lower the probability of training data leakage [28].

Robustness issues manifest in the degradation of model performance when faced with adversarial inputs,
noise perturbations, or out-of-distribution data. Adversarial attacks can use small perturbations to induce
incorrect or inappropriate model outputs, revealing vulnerabilities [29]. To enhance robustness, researchers
have explored adversarial training, perturbation detection, and robust inference methods. By introducing
perturbed samples during training or designing robust optimization objectives, models can maintain high
reliability under various input variations.

Ethical issues encompass bias, discrimination, transparency, and explainability. Due to historical biases
embedded in training data, LLMs may produce unfair outputs related to sensitive attributes such as gender,
race, and religion [30]. To mitigate bias, methods such as data rebalancing, bias detection and mitigation,
and fairness optimization have been proposed. Furthermore, improving model decision-making transparency,
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for example, through attention visualization or generative explanations, helps enhance user understanding
and trust in model behavior.

Alignment techniques are effective in improving safety and ethical compliance. Reinforcement Learning
with Human Feedback (RLHF) and Constitutional AI embed human values and rule systems into model
behavior, mitigating harmful generation and ethical bias issues [18]. Additionally, multiple rounds of safety
evaluation and red teaming have become important steps before deployment to systematically assess model
behavior under extreme inputs and define safety boundaries.

In summary, the safety, robustness, and ethical challenges of LLMs are highly complex and dynamic. Future
research must establish a closed-loop mechanism across model design, training data construction, inference
control, and post-deployment supervision to continuously monitor and optimize model behavior, ensuring
safe, reliable, and responsible operation across diverse application environments.

8. Future Trends and Challenges
With the continuous evolution of large language model technologies, future development trends are
expected to be multidimensional and multilayered, accompanied by numerous unresolved challenges. First,
model efficiency and energy efficiency will become central issues. The current training and inference
processes of large models consume massive computational resources and energy, raising concerns about
sustainability and environmental impact [31]. In the future, low-resource efficient training methods (such as
sparse training and self-distillation), lightweight inference techniques (such as 4-bit quantization and token
merging), and the concept of Green AI are expected to become mainstream research directions.

Second, enhanced multimodal and interactive capabilities are critical for expanding the application
boundaries of LLMs. Multimodal large models (Multimodal LLMs) integrate language with images, audio,
video, and action commands, driving the evolution from single-modality language intelligence toward
general perception and reasoning intelligence [14]. Models like Gemini and Flamingo have already
demonstrated strong potential in complex multimodal tasks. In the future, multimodal LLMs will play key
roles in fields such as autonomous driving, medical diagnosis, and human-computer interaction.

Third, adaptive and personalized learning capabilities will be crucial for improving user experiences.
Current LLMs typically use unified parameters for all tasks and users, despite significant differences across
application scenarios and individual needs. By incorporating mechanisms such as personalized fine-tuning,
continual learning, and memory-augmented models, LLMs can dynamically adjust behavior based on user
interaction history and context, achieving more accurate and natural interactions [32].

Fourth, the trend toward agentification is increasingly apparent. Future LLMs will not only act as passive
text generators but will evolve into intelligent agents capable of autonomous planning, decision-making, and
execution. Early explorations such as AutoGPT and BabyAGI have demonstrated the potential of LLMs in
building autonomous agents by calling external tools, managing memory, and executing multi-step tasks
[33]. Enhancing LLMs' capabilities in long-term reasoning, environmental modeling, and goal
decomposition will be key to advancing agentification.

However, numerous challenges remain, including the diminishing returns of model scaling, limitations in
long-context modeling capabilities, persistent threats to robustness and safety, and issues of ethical
governance and regulatory compliance. Especially as LLMs are applied in high-risk fields such as decision
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support, education, and healthcare, balancing technological innovation with social responsibility becomes an
urgent issue.

9. Conclusion
As a frontier area in current artificial intelligence development, large language models have demonstrated
exceptional capabilities in language understanding and generation, driving revolutionary advances in natural
language processing and related applications. This paper systematically reviewed the fundamental theories
and technical principles of LLMs, covering the Transformer architecture, self-attention mechanisms,
pretraining methods, fine-tuning and alignment techniques, parameter expansion and compression strategies,
inference optimization methods, and the challenges of safety and ethics. Additionally, the paper explored the
future development trends of LLMs in areas such as efficiency improvement, multimodal integration,
personalized intelligence, and autonomous agent development.

Although LLMs have achieved impressive results in many fields, their sustainable development still faces a
series of complex challenges. Future research needs to seek a balance between improving performance and
reducing resource consumption, achieve synergy between expanding model capabilities and ensuring safety
and reliability, and continuously explore the balance between technological advancement and ethical
compliance. Through ongoing innovation and multi-stakeholder collaboration, large language models are
expected to play an increasingly important role in building more intelligent, reliable, and responsible AI
systems.
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