Journal of computer science and software applications
https://www.mfacademia.org/index.php/jcssa
ISSN:2377-0430

Vol. 5, No. 5, 2025

Dynamic Graph Transformers for Temporal Human Activity
Recognition

Cedric Halbrunn
Eastern Washington University, Cheney, Washington, United States
cedric227@ewu.edu

Abstract:

Human activity recognition (HAR) from sequential sensor or video data is a fundamental problem in
machine perception, with applications in surveillance, robotics, healthcare monitoring, and smart
environments. Traditional models rely on static graph structures or recurrent architectures that struggle to
capture dynamic spatial-temporal dependencies. In this paper, we propose a novel architecture—Dynamic
Graph Transformer (DGT)—that integrates graph construction and temporal attention within a unified
transformer framework. Unlike prior works that use pre-defined or fixed adjacency matrices, our model
learns time-varying interaction graphs among human joints or entities through self-attention, enabling
adaptive modeling of pose, motion, and contextual correlation. We introduce a dynamic graph encoder that
computes attention-weighted edge strengths at each frame and a temporal transformer that aggregates node-
level information across time. The model is fully end-to-end trainable and requires no manual graph design.
Evaluations on three benchmark datasets—NTU RGB+D 60, Kinetics Skeleton, and SHREC—demonstrate
that our approach significantly outperforms conventional graph convolution networks and RNN-based
models.
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1. Introduction

Human activity recognition (HAR) has become a pivotal component of intelligent systems designed for
surveillance, healthcare monitoring, human-computer interaction, and robotics. The ability to automatically
interpret motion sequences and identify human behaviors from time-series data is critical for developing
responsive and context-aware applications. In recent years, skeleton-based representations have attracted
increasing attention due to their robustness to environmental variation, viewpoint changes, and background
clutter. These representations abstract away appearance and texture, focusing purely on the geometric
configuration and temporal evolution of body joints, making them well-suited for generalized activity
modeling.

Despite this progress, achieving accurate and generalizable recognition remains challenging. A central
difficulty lies in effectively modeling the spatial dependencies between joints and their evolution over time.
Many traditional approaches treat human skeletons as flat or grid-like structures, using convolutional or
recurrent neural networks to process joint sequences. However, these architectures are often ill-suited to
capture non-Euclidean spatial relationships and can struggle to encode varying joint importance across
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different actions. For instance, the joint interactions involved in waving differ significantly from those in
walking, and a static model architecture may fail to adapt to such context-specific variations.

Graph-based models have emerged as a promising solution by representing the skeleton as a graph, where
nodes correspond to body joints and edges reflect structural or functional relationships. Graph convolutional
networks (GCNs) and their spatial-temporal extensions (ST-GCNs) have shown significant improvements
by incorporating topological structure into motion modeling. However, most of these models rely on fixed
or manually constructed graph topologies, limiting their ability to generalize across activity types with
differing joint coordination patterns. When faced with complex or composite motions, static graphs may
misrepresent the true relational dynamics between joints.

To overcome these limitations, this paper introduces a new approach to human activity recognition based on
dynamically constructed graph structures. Instead of relying on pre-defined or fixed connections, our
method allows the graph topology to evolve over time, driven by the contextual relevance of joint features.
This dynamic modeling framework is implemented within a transformer-based architecture, which combines
graph-level spatial reasoning with global temporal attention. The resulting model is able to capture fine-
grained activity variations and long-range motion dependencies without explicit supervision over graph
construction.

This paper makes the following contributions: First, we propose a fully learnable dynamic graph
formulation for HAR that adapts to context-specific joint interactions. Second, we design a spatial-temporal
transformer that unifies graph learning and temporal sequence modeling in a single architecture. Third, we
introduce a regularization strategy to promote structural smoothness and stability in graph evolution. Finally,
we demonstrate the effectiveness of our approach through comprehensive experiments on several
benchmark datasets, showing superior performance compared to both graph-based and sequence-based
baselines.

2. Related Work

Human activity recognition (HAR) has been studied extensively using various data modalities such as RGB
video, depth maps, inertial sensors, and 3D skeletons. Among these, skeleton-based HAR has gained
prominence due to its compact representation of human motion and relative robustness to environmental
variation. Traditional approaches have primarily utilized recurrent neural networks (RNNs) and
convolutional neural networks (CNNs) to model temporal dynamics and spatial configurations of joint
coordinates. While RNNs can capture sequence dependencies, their capacity to model long-term
dependencies and complex spatial interactions is often limited. CNNs, on the other hand, struggle with the
irregular structure of human joints and their non-Euclidean spatial relationships.

To address this, graph-based models have emerged as a powerful alternative for skeleton-based HAR.
Spatial-Temporal Graph Convolutional Networks (ST-GCNs) introduced a formulation where human
skeletons are represented as graphs, with joints as nodes and anatomical connections as edges [1]. These
models apply graph convolutions over both spatial and temporal dimensions, offering better expressivity
than traditional methods. However, many of these approaches use fixed graph structures based on human
anatomy or handcrafted priors, which may not capture the dynamic nature of real-world movements. More
recent works have attempted to learn edge weights during training, but the overall graph topology often
remains static or weakly adaptive [2], [3].
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Dynamic graph learning has recently gained attention in various applications, including social network
analysis, molecule modeling, and human motion understanding. In the context of HAR, several studies have
proposed attention-based mechanisms to dynamically adjust edge importance [4], [5]. For example, works
like 2s-AGCN [6] and CTR-GCN [7] introduced channel-wise and temporal attention to enhance GCN
flexibility. However, these models often treat spatial and temporal dependencies separately, and dynamic
graph adaptation is typically limited to re-weighting existing connections rather than constructing entirely
new topologies.

Meanwhile, transformer architectures have revolutionized sequence modeling in natural language
processing and are increasingly applied to visual tasks. Vision transformers (ViT) [8] and spatial-temporal
transformers [9] have shown that global self-attention can replace traditional convolution or recurrence,
especially in large-scale datasets. When applied to HAR, transformers enable modeling of long-range
motion dependencies and multi-joint interactions without structural bias. Nevertheless, most transformer-
based HAR models assume fixed input formats and lack mechanisms to model dynamic joint connectivity
over time, which limits their ability to capture context-specific spatial dependencies.

Our work builds upon these ideas by integrating graph learning and transformer-based sequence modeling in
a unified architecture. Unlike previous methods, our model learns a fully dynamic graph structure at each
time step, guided by joint-wise attention scores that evolve across frames. This allows the network to
adaptively model different activities with varying spatial dependencies. In addition, we incorporate a
temporal transformer that fuses information across frames, capturing both short-term and long-term
temporal cues. Compared to hybrid GCN-transformer models, our method offers end-to-end dynamic graph
construction without reliance on pre-defined adjacency templates.

In summary, while existing approaches have made significant strides in modeling spatial-temporal patterns
for HAR, they fall short in adaptively capturing dynamic inter-joint relationships and integrating them with
flexible temporal modeling. Our proposed Dynamic Graph Transformer bridges this gap by learning both
structure and temporal flow in a unified and data-driven way.

3. Method

In this section, we introduce the architecture of our proposed Dynamic Graph Transformer (DGT) for
human activity recognition. The core idea is to construct a time-varying graph that represents the spatial
interactions among body joints at each time step and to model temporal dependencies across frames through
a transformer-based sequence encoder. Unlike traditional graph convolutional networks that rely on static or
predefined adjacency matrices, our method builds graph structures dynamically based on joint-wise
attention computed directly from feature embeddings. We further incorporate a regularization term to
encourage smooth transitions in graph topology over time. An overview of evolving graph structures across
different time frames is visualized in Figure 1.

Let X={X1,X2,....XT} denote a skeleton sequence of length T, where each frame Xt € RN contains N
joints represented by d-dimensional features (e.g., 3D coordinates or embedding vectors). The goal is to
predict the activity label y associated with the full sequence. To achieve this, we proceed through the
following stages.
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Figure 1. Example of Dynamic Graph Topology Changes Over Time

3.1 Dynamic Graph Construction

At each time step ¢, we define a dynamic graph G where nodes Vcorrespond to body joints and edges
E' are computed via a pairwise attention mechanism. Specifically, for each node i, we compute the attention
score to node jusing:

of — exp ((qug)T(kag))
VS exp (Woal) T (Wial,))

Where x!, € R¢ is the input feature for joint i at time t , and Wy, Wy € R¥d are learned projection matrices.
The normalized attention score o' serves as the edge weight from node i to node j, capturing contextual
relevance between joints. This formulation yields a fully connected, directed graph at each time step, whose
topology evolves based on the joint configurations in the sequence. As visualized in Figure 1, graph
structure changes adaptively over time, reflecting differences in action dynamics such as waving, clapping,
or running.

3.2 Graph Feature Aggregation

Once the dynamic graph G; is constructed, we update each node representation via attention-weighted
aggregation. The updated feature z;' for node iat time #is given by:

N
t_ / '
z, = E aijWUa:j
j=1

Where Wv € R™d i a learnable value projection. This operation aggregates information from other joints,
weighted by their relevance to the current node. We apply a feedforward block with layer normalization to
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enhance representation depth and stability. The graph attention module is repeated for multiple heads, and
the results are concatenated to form the final representation for each node at frame .

3.3 Experiments and Evaluation

To evaluate the effectiveness of our proposed Dynamic Graph Transformer (DGT), we conduct a
comprehensive series of experiments across three widely used benchmarks: NTU RGB+D 60, Kinetics
Skeleton, and SHREC. These datasets differ significantly in scale, modality, and activity granularity,
providing a rigorous testing ground for spatial-temporal recognition performance. We compare our model
against state-of-the-art skeleton-based activity recognition methods including ST-GCN, 2s-AGCN, CTR-
GCN, and transformer-based HAR baselines. All models are trained under the same settings using AdamW
optimizer, a batch size of 64, and input sequences normalized to fixed lengths per dataset. Accuracy is
reported as the primary evaluation metric for fair comparison.

As shown in Table 1, DGT achieves top accuracy across all three datasets. On NTU RGB+D 60, our model
reaches 88.6%, outperforming the strongest baseline CTR-GCN by over 3 percentage points. This
demonstrates the advantage of dynamic graph modeling over fixed topologies, especially in diverse multi-
view and multi-subject scenes. On Kinetics Skeleton, which features high intra-class variability and noisy
pose estimates extracted from videos, our method achieves 36.1%, showing better robustness to estimation
noise and sequence irregularity. On the wearable sensor-based SHREC dataset, DGT attains 95.6%,
surpassing other methods in recognizing fine-grained gestures from low-dimensional inputs. These
consistent gains validate the effectiveness of dynamically evolving attention-based graphs.

Table 1 : Comparison of HAR Accuracy (%) Across Methods and Datasets

Method NTU RGB+D 60 Kinetics Skeleton SHREC
ST-GCN 81.5 28.2 92.4
2s-AGCN 83 30.7 93.1
CTR-GCN 85.2 32.5 94
Transformer-HAR 86.1 334 94.2
DGT (Ours) 88.6 36.1 95.6

Figure 2 provides a visual comparison of method-wise performance across datasets. Notably, all
transformer-based models exhibit stronger cross-dataset generalization than purely GCN-based ones, but
only DGT demonstrates consistent superiority across both large-scale and compact datasets. The flexibility
of adapting spatial structure to action context enables the model to generalize to different body
configurations and camera perspectives. For example, actions involving occluded limbs or subtle joint
interactions are better captured through learned attention scores rather than fixed edges.

To further understand model behavior, we perform an ablation study by systematically removing key
components of DGT. First, when replacing the dynamic graph with a fixed anatomical adjacency matrix,
accuracy drops by 4-6% across datasets, confirming the contribution of adaptive edge learning. Second,
when disabling the graph smoothness regularization term, we observe a 1-2% drop in accuracy and
increased instability in attention maps, particularly on long sequences. Third, replacing the temporal
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transformer with a 2-layer GRU module reduces performance by 3% on average, highlighting the role of
long-range global attention.
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Figure 2. HAR Accuracy Across Datasets by Method

Beyond accuracy, we also examine training efficiency and parameter footprint. Our model contains
approximately 7.1M trainable parameters, marginally more than CTR-GCN but significantly fewer than full
transformer-based alternatives such as PoseFormer. Training converges within 80 epochs for all datasets,
and inference runs at 92 FPS on a single RTX 3090 GPU, making the approach viable for real-time
deployment in online systems such as surveillance and robotic control.

We also evaluate robustness under missing joint scenarios by randomly masking 10% of joint inputs during
testing. While baseline GCNs suffer over 8% performance degradation, our model only drops 3.1% on
average, indicating its resilience to partial observations and occlusion. Similarly, under noisy joint
perturbations modeled by additive Gaussian noise, DGT maintains significantly higher accuracy than
models with fixed graphs, suggesting that dynamic attention reduces reliance on brittle topological
assumptions.

Finally, qualitative analysis of error patterns reveals that most misclassifications occur among semantically
similar actions, such as "drinking water" vs. "brushing teeth" or "waving left" vs. "waving right." Attention
map inspection shows that in some cases, the model fails to distinguish mirror-symmetric actions due to
similarity in global motion patterns. Incorporating action-specific symmetry cues or auxiliary view
information may address this in future work.

In summary, our experiments demonstrate that DGT provides substantial improvements in human activity
recognition by leveraging dynamic graph learning and transformer-based temporal modeling. The
performance gains, robustness to missing data, and real-time inference capability collectively support the
practical utility and scalability of the proposed architecture.

4. Discussion and Implications

The experimental results demonstrate that dynamically evolving graph structures combined with temporal
transformer encoding provide a significant leap in the capability of human activity recognition systems.
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Unlike traditional static models that rely on fixed spatial priors or limited temporal windows, our proposed
Dynamic Graph Transformer (DGT) offers a flexible and data-driven framework that learns the structure
and dependencies directly from the input. This has major implications for the design of general-purpose
recognition systems capable of adapting to a wide range of behaviors, motion styles, and environments.

One of the most salient advantages of DGT lies in its ability to interpret activity-specific spatial
relationships that may be overlooked by predefined graphs. For instance, activities such as “clapping” or
“tying shoelaces” involve close coordination between hands or between hands and feet, which are not
typically connected in anatomical graphs. The dynamic attention mechanism in DGT allows the model to
discover these transient but meaningful interactions through learned attention scores. This not only improves
recognition accuracy but also enhances model interpretability, as the learned graphs can be visualized and
analyzed to understand which joints contribute most to different actions.

Furthermore, the incorporation of a temporal transformer module enables the model to look across frames
globally, thereby capturing long-range dependencies that traditional RNNs or CNNs often miss. This is
particularly useful for composite or sequential actions where the meaning emerges from the sequence of
sub-actions. The ability to model such hierarchical or multi-phase dynamics without manually segmenting
the input sequence makes the framework well-suited for applications in healthcare monitoring (e.g.,
rehabilitation assessment), surveillance (e.g., behavior detection), and robotics (e.g., gesture-driven
command execution).

In terms of computational efficiency and deployment, DGT offers a favorable balance. By keeping the
model lightweight (approximately 7.1M parameters) and training only the dynamic prompt tokens and
transformer layers, the framework is scalable to longer sequences or more complex datasets without
incurring excessive memory or computation cost. Real-time performance on standard hardware suggests that
the model can be integrated into interactive systems where timely responses to human actions are essential.
Moreover, since the learned graph structures are conditioned only on joint-level features, the model
generalizes well across different skeleton formats and data acquisition modalities, from camera-based pose
estimators to wearable motion capture sensors.

Despite its advantages, several limitations must be acknowledged. First, while the model learns dynamic
graphs effectively, it does not explicitly enforce topological constraints such as joint symmetry or physical
limits. In rare cases, this can lead to unrealistic edge assignments, especially in ambiguous poses.
Incorporating biomechanical priors or anatomical knowledge into the attention computation may improve
plausibility. Second, the current implementation assumes consistent joint ordering and availability across
frames, which may not hold in cross-domain scenarios where skeletons differ in topology or granularity.
Future work could explore graph alignment techniques or joint-set agnostic representations.

Another area of potential improvement lies in multi-modal fusion. While this work focuses on skeleton-
based activity recognition, integrating other data streams such as RGB video, depth, or audio could provide
complementary cues that enhance disambiguation. The transformer framework naturally supports such
integration via cross-attention mechanisms, suggesting that a multi-modal extension of DGT could further
push performance boundaries. Additionally, dynamic graphs could be conditioned not just on joint features
but on contextual inputs such as scene type or user profile, enabling more personalized or environment-
aware models.

Finally, from a theoretical perspective, the dynamic graph learning process opens up intriguing research
directions. For example, analyzing the evolution of graph entropy over time could yield insights into the


http://www.mfacademia.org/index.php/jcssa

Journal of computer science and software applications
https://www.mfacademia.org/index.php/jcssa
ISSN:2377-0430

Vol. 5, No. 5, 2025

complexity of different activities. Similarly, formalizing the conditions under which dynamic graphs
outperform static ones in expressivity or generalization may offer a deeper understanding of graph-based
sequence modeling. The regularization techniques introduced here, such as topology smoothness constraints,
also invite further investigation into the trade-offs between adaptiveness and stability in structured neural
models.

In summary, the Dynamic Graph Transformer architecture represents a step forward in unifying structural
and temporal modeling for human activity recognition. It brings together ideas from graph learning,
attention mechanisms, and transformer architectures into a cohesive framework that is both effective and
extensible. Its ability to dynamically adapt to motion context, coupled with efficient computation and strong
empirical performance, positions it as a promising foundation for next-generation HAR systems in both
academic research and real-world deployment.

5. Conclusion

In this paper, we presented the Dynamic Graph Transformer (DGT), a novel framework for human activity
recognition that integrates time-varying graph construction with transformer-based temporal modeling.
Unlike traditional graph-based approaches that rely on static or manually constructed topologies, our model
dynamically learns inter-joint relationships at each time step using attention mechanisms. This enables the
model to adapt to diverse activity types and motion contexts without relying on rigid assumptions about
spatial configuration. The addition of a temporal transformer allows for effective modeling of long-range
dependencies and composite actions, while the proposed graph smoothness regularization enhances
structural stability across frames.

Extensive experiments on three benchmark datasets—NTU RGB+D 60, Kinetics Skeleton, and SHREC—
demonstrate that DGT outperforms strong baselines in terms of accuracy, robustness, and efficiency.
Visualizations of the learned graph dynamics reveal that the model captures semantically meaningful joint
interactions that evolve with the action, providing both interpretability and generalization. Moreover, the
lightweight design and competitive inference speed make the method viable for real-time applications in
healthcare, surveillance, and robotics.

Looking ahead, this framework opens new directions for research on dynamic structure learning,
particularly in multi-modal and multi-agent settings. By treating graph topology as an adaptive component
rather than a fixed prior, DGT represents a significant step toward more general and context-aware human
understanding systems.
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