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Abstract:
With the increasing complexity of stock markets and the nonlinear nature of stock price fluctuations,
traditional financial forecasting methods often fail to achieve satisfactory results. This study
proposes a hybrid neural network model that integrates Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) networks to enhance the accuracy of stock closing price
prediction. The model leverages CNN to extract spatial features from historical financial indicators
such as opening price, highest price, and trading volume, and then uses LSTM to capture temporal
dependencies within the time series data. Experimental validation is conducted using a dataset of the
CSI 300 Index from 1992 to 2021, demonstrating the proposed model’s superior performance in
comparison with CNN-only, LSTM- only, and CNN+RNN configurations. Evaluation metrics
including Mean Relative Error (MRE) and Mean Absolute Error (MAE) indicate that the CNN-
LSTM hy- brid network significantly improves prediction precision. The results highlight the
potential of deep learning in modeling complex financial dynamics and offer insights into data-
driven approaches for stock risk forecasting.
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1. Introduction
With the rapid development of the social economy, the stock market system has become a new form
of organizational structure. Increasingly, listed companies attract the attention and capital of the
public, and the expansion of capital and the inflow of resources bring greater business pressure to
enterprises. However, stock prices fluctuate frequently, and their volatility is not only influenced by
supply and demand in the market, but also by national policies, macroeconomic conditions, and
industry outlook. Therefore, accurately predicting stock market trends holds significant importance
for commercial reports and the financial sector[1].

In recent years, deep learning has demonstrated the capability of enabling machines to learn from
large-scale scenarios, expanding into fields like artificial intelligence. It provides the potential to
assist with data-driven decision-making through complex feature extrac- tion and modeling[2].
Convolutional Neural Networks (CNN), a forward-propagating neural network structure, are
particularly effective in extracting local features through multilayer convolutions and can handle
temporal data when appropriately modified. They transform input sequences into compressed short
sequences through convolution and pool- ing, thereby encoding temporal and spatial feature
sequences based on the position of features within the data.

Long Short-Term Memory Networks (LSTM), a type of Recurrent Neural Network (RNN), are
designed to model sequence data over long durations. Traditional RNNs struggle with long-term
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dependencies due to limited memory, often resulting in vanishing gradients during training, which
hinders performance. LSTM networks overcome this by incorporating memory cells and gate
mechanisms, allowing the model to retain informa- tion over longer time steps, effectively solving
the limitations of traditional RNNs[3].

Stock price prediction has become a major research focus in finance. Since 1996, scholars have been
applying neural networks to the analysis of stock data. For example, in 1996, Gen et al. utilized
neural networks to analyze industrial indices and demonstrated that stock prices can be effectively
predicted using historical data. In 2000, Rodriguez et al. used traditional neural networks for stock
price forecasting and validated their profitability. In 2021, Huang Chaochao leveraged Weibo
sentiment data and integrated it with stock indices and stock returns to build a prediction model,
which proved more accurate than traditional models.

From a temporal perspective, current stock prices are often influenced by prior market movements
and can reflect collective sentiment or panic, resulting in increased volatility. Spatially, stock prices
are affected by multiple macro factors and exhibit similar volatility across markets[5]. Generally,
volatility increases with the pace of trading. Based on this, we propose a hybrid model[6] combining
convolutional neural networks and long short-term memory networks. This model comprehensively
captures both spatial and temporal dependencies in stock market data, leveraging the strengths of
CNN in spatial feature extraction and LSTM in modeling long-term sequences, thereby establishing
a more reliable predictive relationship between current and past stock data.

In recent years, CNN has achieved good results in image processing and classification tasks,
particularly in facial recognition and pedestrian detection.

CNNs can effectively identify simple patterns in data and are capable of extracting useful features
from short or fixed-length data segments, especially when the positional relationship of features is
important. Additionally, due to their shared-parameter archi- tecture and ability to extract global
features via pooling, CNNs are efficient in complex models with fewer trainable parameters.
Consequently, CNNs are widely used in feature extraction for spatial attributes, providing high-
quality input features for downstream models.

RNNs predict current values based on prior observations, which is suitable for time- series tasks such
as language modeling. However, when the required time span is long, traditional RNNs encounter
gradient vanishing and difficulty learning long-range depend- encies. LSTM networks address this
issue with a specialized structure of memory cells and gates, enabling the network to capture long-
term dependencies in financial time series, thereby mitigating the gradient vanishing and
performance degradation problems en- countered by standard RNNs during training[7].

2. Related Work
Reinforcement learning (RL) has increasingly demonstrated its maturity and efficacy in financial
modeling and dynamic risk control. Particularly, nested frameworks tailored for nonlinear financial
markets have emerged as effective paradigms for adaptive risk manage- ment [8]. In complex
financial environments, optimization of decision-making tasks and robust risk control have been
successfully validated through techniques such as Double Deep Q-Networks (Double DQN) and an
enhanced version of Asynchronous Advantage Actor-Critic (A3C) [9][10]. To address the growing
needs for cross-domain collabora- tion and privacy preservation, federated learning has been
introduced into distributed financial modeling, enabling secure data sharing and decentralized
optimization without compromising sensitive information [11].
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Further enhancing model interpretability and generalization in structured financial scenarios, context-
aware rule mining based on dynamic Transformers has been proposed [12], along with graph
representation learning methods for transaction networks that capture topological and semantic
relationships within evolving financial ecosystems [13]. In the realm of portfolio optimization, RL-
based methods built on the QTRAN framework have shown promise in efficiently navigating high-
dimensional action spaces to discover optimal trading strategies [14]. Concurrently, low-rank
adaptation (LoRA) has facilitated rapid transfer and fine-tuning of deep models under resource-
constrained environments, significantly reducing training costs while maintaining performance [15].

For time series anomaly detection, global temporal attention mechanisms have en- hanced the
expressiveness of temporal patterns and contributed to more precise anomaly identification [16]. To
combat class imbalance—common in fraud detection and rare event prediction—comprehensive
strategies involving ensemble learning and resampling have been explored [17]. Moreover,
heterogeneous graph neural networks (GNNs), integ- rated with graph attention mechanisms, have
been utilized to improve the robustness and adaptability of fraud detection systems under noisy and
imbalanced data settings [18]. Probabilistic graphical models combined with variational inference
have also been applied to mitigate uncertainty propagation caused by imbalanced class distributions
[19].

In the domain of financial text analysis, pretrained language models such as BERT have enabled
automation of audit report generation and compliance analysis, showcasing their strong
transferability and performance in regulatory tasks [20]. For high-frequency trading (HFT) scenarios,
deep learning architectures have been employed to conduct highly sensitive anomaly detection across
millisecond-level data streams [21]. The Twin Delayed Deep Deterministic Policy Gradient (TD3)
algorithm, initially designed for con- tinuous control, has been applied to load balancing in
distributed systems, offering a transferable policy optimization framework applicable to financial
risk control and infra- structure management [22].

Deep probabilistic modeling using Mixture Density Networks (MDNs) has been lever- aged for
detecting anomalies in user behavior patterns [23], while spatiotemporal deep learning models have
contributed to resource usage prediction, including memory con- sumption forecasting in financial
computing environments [24]. For low-latency deploy- ment needs, lightweight architectures such as
MobileNet and edge computing strategies have supported efficient, real-time inference at the edge
[25]. To handle high-dimensional and sparse feature spaces, a Diffusion-Transformer framework has
been developed to en- hance feature extraction and representation capabilities [26].

In credit risk modeling, hybrid LSTM-GRU architectures have been used to capture temporal
dependencies in loan default prediction tasks [27], while temporal graph repres- entation learning has
proven effective in modeling user behavior evolution within transac- tion networks [28].
Simultaneously, data augmentation techniques in contrastive learning have been systematically
investigated to improve representation robustness and general- izability [29]. For sequence labeling
tasks, the BiLSTM-CRF framework augmented with social attribute features has improved
contextual sensitivity in boundary recognition [30]. Additionally, structured preference modeling has
been applied to fine-tune large language models (LLMs) under reinforcement learning settings,
yielding personalized behavioral policies [31].

The integration of knowledge graph reasoning and pretrained language models has been explored for
structured anomaly detection in financial records [32], and knowledge- guided strategy structuring
using LLMs has supported multi-agent collaboration and decision-making [33]. The joint paradigm
of graph convolutional networks (GCNs) and sequential modeling has been introduced for scalable
network traffic estimation [34], and A3C has also been adapted for intelligent task scheduling in
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microservices to optimize resource allocation [35]. In the field of multi-object tracking, DeepSORT-
based visual tracking frameworks have demonstrated robust feature association and target continuity
in crowded scenes [36].

Causal representation learning has been applied to cross-market return prediction, enhancing model
robustness under distribution shifts [37]. Efficient language model de- ployment has benefited from
collaborative distillation strategies, improving parameter efficiency without significant performance
loss [38]. Fusion-based retrieval-augmented generation (RAG) has been used to improve complex
question answering by combining external knowledge and generative capabilities [39]. Multi-agent
reinforcement learning (MARL) has found success in elastic cloud resource scaling, dynamically
allocating com- puting resources based on workload patterns [40].

For network environments characterized by high dynamism, deep regression techniques have been
employed to predict transmission time, thereby supporting real-time traffic op- timization [41]. In
asset return prediction, structured textual factors and dynamic time windows have been jointly
modeled to capture temporal signals and contextual dependen- cies [42]. Multi-head attention
mechanisms have been used in modeling service semantics and access patterns in microservice
architectures [43], while consistency-constrained dy- namic routing has been proposed to enhance
reasoning consistency and robustness in internal knowledge adaptation of large-scale models [44].

3. Model Construction Principles
To fully capture the temporal characteristics in stock time series data, this paper proposes a model
based on a hybrid of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM)
networks. The model first uses CNN to extract the spatial features of historical stock data and then
passes this output as the input to the LSTM network to extract temporal dependencies.

The prediction model consists of a hybrid neural network-based system, which is mainly divided into
three parts: the input layer, the spatial feature extraction mod- ule based on 2D CNNs, and the
temporal feature extraction module based on LSTM. These are then fused and fed into the fully
connected layer for final prediction.

3.1 Local Spatial Feature Extraction Module
Historical stock data is treated as input and processed through multilayer convolutional neural
networks to extract spatial correlations between elements in the sequence. These spatial patterns
form a set of rules, which are then abstracted and generalized by deeper network layers. The final
output is obtained by flattening and concatenating the local feature maps. The processing steps are as
follows:

Input Layer: The input consists of a time-series stock dataset of length n, represented as x = [x1,
x2, ..., xT ], where each xi includes opening, closing, high, low prices, and volume, etc.

Convolutional Feature Extraction: CNN extracts local spatial features from the data. To ensure the
convolution captures important spatial dependencies, CNN is em- ployed to scan over the data using
convolution kernels. Due to weight sharing and local receptive fields, CNNs help reduce the
complexity of the model while retaining its capa- city for abstraction. Pooling operations follow to
downsample and enhance robustness. Convoluted and pooled features are flattened to form the
feature vector used in the next stage.

3.2 Temporal Feature Extraction Module
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Since CNNs are not sensitive to temporal order, the features extracted by CNN are passed to an
LSTM network to model the temporal dimension, avoiding issues like gradient explosion and
vanishing, which occur during backpropagation through time (BPTT) in deep networks.

To enhance quality and reduce network complexity, we use a standard three-layer LSTM network.
Each LSTM unit consists of an input gate, forget gate, output gate, and memory cell, whose purpose
is to help the network selectively memorize useful information while filtering out irrelevant input.
The equations are as follows:

ot = σ(Wo[ht−1, xt] + bo) (1)

Equation (1) defines the output gate ot, where ht−1 and xt represent the previous hidden state and
current input, Wo and bo are weight and bias parameters, respectively, and σ is the sigmoid
activation function.

The input gate determines how much new information should be added to the cell state:

it = σ(Wi[ht−1, xt] + bi) (2)

The candidate cell state is computed as:

C˜t = tanh(Wc[ht−1, xt] + bc)(3)

Equations (2) and (3) describe the process of computing the new memory candidate. The sigmoid
function controls what to keep, and the tanh function maps the input to [−1, 1], thereby forming the
memory content Ct.

The final output is:

ot = σ(Wo[ht−1, xt] + bo) (4)

ht = ot ∗ tanh(Ct) (5)

3.3 Feature Fusion and Output
The spatial and temporal features extracted from CNN and LSTM are fused to improve
discriminatory power. We use a fully connected layer to combine all feature vectors from the last
convolution and LSTM layers. This fusion enhances global feature interactions and enables effective
representation of both price trends and volume dynamics.

The final output layer uses a linear regression layer to predict stock prices or indicators such as
returns. In this paper, we focus on predicting only the closing price.

4. Experiments and Results
4.1 Dataset Description
The experimental data used in this paper was obtained from NetEase Finance and covers the
Shanghai-Shenzhen 300 Index from 1992 to 2021. The original dataset consists of 6,700 records,
each including 12 features: date, stock code, name, closing price, highest price, lowest price, opening
price, previous close, change amount, change rate, trading volume, and trading value.
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After preprocessing, 6,000 records were used as experimental data: 5,500 for training, 300 for
validation, and 200 for testing. To reduce redundancy, stock codes and names were removed due to
their lack of significance for neural networks.

The model input includes 8 selected features: highest price, lowest price, opening price, previous
close, change amount, change rate, trading volume, and trading value. The output is the closing price.

Since stock prices are time-series data, the current closing price can be influenced by the previous
values of several features. Therefore, this paper uses the past 15 days’ worth of data to predict the
16th day’s closing price. A sample of the input-output structure is shown in Table 1.

Table 1: Sample of Input and Output Data

Input [[4937.0918, 4891.6249, 4915.7305, 4866.3826, 63.5583, 1.3061,

1689670070.3, 4.44e+11], [4876.0728, 4843.9531, 4843.9531,

4833.9281, 32.4545, 0.6714, 14611389600.0, 2.8e+11], ..., [5013.9764,

4955.8876, 4986.7953, 4992.8294, -20.697, -0.4145, 2461531500.0,

2.9e+11]]

Output 4872.1324

4.2 Network Hyperparameters
The proposed CNN+LSTM hybrid model consists of convolutional layers, pooling layers, and a fully
connected layer. To reduce overfitting and enhance feature extraction, the ReLU activation function
is used.

The first convolution layer has 32 kernels of size 1×4 - The second layer has 16 kernels of size 1×2
with stride 4 - The LSTM network has 3 layers, each with 64 hidden units - Learning rate: 0.00008 -
Epochs: 500 - Batch size: 500 Each epoch computes the forward pass and uses Mean Squared Error
(MSELoss) to compare predictions with targets. After multiple iterations and tuning, the model
achieves the minimum validation loss.

4.3 Experimental Results and Analysis
To verify the reliability and accuracy of the proposed model, predicted closing prices were compared
with actual closing prices. The horizontal axis represents time, and the vertical axis represents the
closing price.

Three baseline models were set up for comparison: CNN + Fully Connected, LSTM + Fully
Connected, CNN + RNN

Results show that: CNN alone performs poorly due to limited temporal sensitivity. LSTM performs
better, but struggles to model long-term dependencies between distant features. CNN+RNN also
performs worse due to gradient vanishing during long sequences.

The proposed CNN+LSTM hybrid achieves the best performance, closely matching real stock prices.

To summarize: under optimal conditions, the proposed CNN+LSTM model outper- forms all
baselines. The LSTM+Fully Connected model performs second-best, followed by CNN+Fully
Connected, and CNN+RNN performs the worst.
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5. Conclusion
The stock market, by facilitating the concentration of capital, promotes the formation of effective
enterprise capital structures, thereby accelerating the development of the com- modity economy to a
large extent. However, due to the influence of various factors, stock price fluctuations form an
extremely complex nonlinear dynamic system. In recent years, stock price forecasting has often
yielded unsatisfactory results.

The complex and nonlinear nature of neural networks enables them to fit deep learning tasks well,
producing impressive results in various fields. This paper proposes a hybrid neural network model
combining Convolutional Neural Networks (CNN) and Long Short- Term Memory (LSTM)
networks. The model first utilizes CNN to extract spatial cor- relations among input features,
identifying relationships based on their spatial positions. Pooling and fully connected layers are then
used to reduce dimensionality and simplify model complexity.

Subsequently, LSTM networks are used to capture temporal dependencies between features, fully
leveraging the memory and sequence modeling capabilities of recurrent networks. Through ablation
experiments and comparative analysis, it has been shown that the proposed hybrid model
significantly outperforms other methods in terms of pre- diction accuracy, demonstrating strong
adaptability and practical effectiveness in stock price forecasting.
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