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Abstract:

This study proposes an uncertainty-aware anomaly detection algorithm to address the challenges of dynamic
coupling among multidimensional metrics, complex system dependencies, and diverse anomaly patterns in
cloud backend environments. The method achieves robust modeling and accurate detection for high-
dimensional non-stationary data by integrating temporal feature extraction, structural dependency modeling,
and uncertainty quantification within a unified framework. A multi-scale temporal feature encoder is
designed to capture both short-term fluctuations and long-term trends in system operations, while a dynamic
graph mechanism models the evolving topological relationships among service nodes to enable structure-
aware dependency learning. Furthermore, the model employs variational inference to perform probabilistic
modeling in the latent space, estimating prediction confidence and uncertainty distributions to dynamically
adjust detection thresholds and decision boundaries in complex environments. Experimental results show
that the proposed algorithm maintains high detection accuracy and stability under highly dynamic conditions
such as load surges, resource fluctuations, and network variations. It effectively reduces false positives and
false negatives and demonstrates strong interpretability in anomaly propagation path modeling and risk
identification. This research provides a scalable, interpretable, and adaptive detection framework for
intelligent cloud backend operations, establishing a solid algorithmic foundation for system state awareness
and risk management in complex environments.

Keywords:

Cloud backend systems; anomaly detection; uncertainty modeling; dynamic dependency analysis

1. Introduction

With the widespread adoption of cloud computing and microservice architectures, modern backend systems
are evolving into highly dynamic and complex distributed environments. Numerous heterogeneous
components operate collaboratively through containerization and service-oriented mechanisms, generating
massive, multidimensional monitoring data. These data reflect resource utilization, service invocation
relationships, network latency, and user request patterns, serving as key indicators for ensuring system
stability and performance optimization. However, as system scale expands and business processes diversify,
the temporal dependencies and structural couplings among metrics become increasingly intricate. Traditional
anomaly detection methods based on static thresholds or fixed patterns fail to capture such dynamic
characteristics, leading to delayed identification, high false alarm rates, and difficulties in fault localization.
Therefore, achieving accurate, efficient, and interpretable anomaly detection in high-dimensional, non-
stationary environments has become a crucial research focus in intelligent operations and maintenance[1,2].

The core challenge of cloud-based backend environments lies in their pronounced dynamism and uncertainty.
Load fluctuations, resource contention, and topology variations across service instances result in highly
nonlinear and time-varying system behaviors. Meanwhile, external factors such as network congestion,
changes in scheduling strategies, and tenant-specific behaviors introduce unpredictable disturbances[3]. As a
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result, anomaly signals are often concealed within complex background noise. In addition, label scarcity and
class imbalance are common in cloud systems, making it difficult to rely on traditional supervised learning
approaches. Under these conditions, deterministic models are insufficient to represent the probabilistic and
uncertain nature of system behavior, thereby limiting generalization and reliability in complex operating
environments[4].

In this context, incorporating uncertainty-aware modeling becomes particularly significant. By explicitly
quantifying confidence and uncertainty distributions during anomaly detection, it is possible to distinguish
between risks arising from data noise, model bias, or structural drift. This provides a more interpretable
foundation for evaluating detection outcomes. Uncertainty modeling not only enhances stability under
boundary or ambiguous cases but also supports dynamic threshold adjustment and adaptive model updating,
maintaining consistent detection performance in evolving environments. Furthermore, integrating Bayesian
inference, variational estimation, or entropy-based metrics enables statistical identification of anomalies
within high-dimensional monitoring data. This probabilistic understanding of system evolution lays a
theoretical foundation for intelligent operational decision-making[5].

At the same time, backend system metrics exhibit strong temporal and structural dependencies. Service
invocation chains often form complex directed dependency networks, where local faults can propagate
through these relationships, resulting in cascading anomalies[6]. Consequently, effective anomaly detection
must capture both temporal dynamics and structural semantics. Uncertainty-aware mechanisms can unify
temporal and structural modeling perspectives, providing quantitative insights into anomaly propagation and
root-cause identification. By estimating uncertainty in time-varying dependencies, the model facilitates the
transition from observed anomalies to causal anomalies, supporting robust monitoring and automated
diagnosis in backend systems.

In summary, developing uncertainty-aware anomaly detection algorithms for cloud-based backend
environments is an essential step toward addressing system complexity and dynamism[7]. It is also a key
pathway for achieving high availability and adaptive operations in cloud platforms. This research direction
promotes the transition of intelligent monitoring from deterministic detection to probabilistic reasoning and
provides new theoretical and methodological foundations for multidimensional system modeling, risk
assessment, and resource scheduling. In the future, as cloud systems continue to expand and evolve toward
higher levels of intelligence, uncertainty awareness will become a core capability for building trustworthy,
adaptive, and interpretable anomaly detection systems. Its research outcomes will provide sustained
momentum for stable cloud service operation and intelligent decision-making[8].

2. Related Work

Recent advancements in anomaly detection have increasingly relied on deep learning to model temporal
dynamics and structural dependencies in high-dimensional data. In the field of time-series anomaly detection,
deep neural architectures such as LSTMs have been successfully employed to capture sequential behaviors
and adaptively determine abnormal deviations using dynamic thresholding techniques [9]. Autoencoder-
based approaches and unsupervised frameworks further enhance latent pattern discovery in multivariate
sequences, enabling robust anomaly identification under limited labels and complex input distributions [10],

[11].

A significant leap in reliability and interpretability stems from incorporating predictive uncertainty into
anomaly detection models. Bayesian approximation techniques like dropout [12] and ensemble learning [13]
have proven effective in quantifying model confidence, offering essential mechanisms for handling
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ambiguous or noisy data. Metrics designed specifically for time series evaluation have also been proposed to
better assess detection performance under temporal fluctuation scenarios [14].

Beyond temporal modeling, anomaly detection in distributed systems increasingly involves learning
structural patterns through graph representations. Comprehensive surveys and empirical studies have
demonstrated the effectiveness of graph-based algorithms in detecting contextual and relational anomalies
[15], while semantic graph models have been proposed to capture protocol-specific dependencies in
heterogeneous computing environments [16]. These studies align closely with efforts to model dynamic
service topologies and fault propagation in cloud systems.

In light of data privacy and decentralized infrastructure constraints, federated learning has gained traction in
optimizing distributed anomaly detection. Privacy-aware optimization strategies integrating differential
privacy [17] and structural perturbation [18], [19] contribute to secure and robust model fine-tuning in cross-
domain environments. These methods emphasize scalable deployment without compromising data
confidentiality or structural integrity.

Additionally, the prediction of resource usage in microservice-based architectures has been enhanced by
contrastive learning frameworks that capture dual-branch dependencies and operational behaviors [20]. Such
insights support the modeling of multidimensional performance indicators and resource dynamics in backend
systems, contributing to early risk detection and service optimization.

Collectively, the referenced studies offer foundational insights into the design of uncertainty-aware,
structurally adaptive, and temporally sensitive anomaly detection algorithms. The proposed work builds upon
these principles by unifying temporal encoding, dynamic dependency modeling, and probabilistic inference
to enable scalable and interpretable anomaly detection in evolving cloud backend environments.

3. Method

This study introduces an uncertainty-aware anomaly detection algorithm designed for large-scale cloud-based
backend environments, where complex interactions among services and rapidly shifting workload patterns
make traditional modeling approaches insufficient. The proposed method jointly captures multidimensional
temporal features, cross-service structural dependencies, and probabilistic uncertainty distributions, forming a
unified probabilistic framework capable of providing both accurate detection and interpretable confidence
estimates. To achieve this goal, the overall system is organized into four tightly coupled stages: temporal
feature extraction, structural dependency modeling, joint latent space inference, and uncertainty
quantification.

In the first stage, the model performs unified preprocessing on heterogeneous monitoring data originating
from logs, traces, resource metrics, and latency measurements. A normalization — reconstruction module
removes scale inconsistencies among metrics and reduces noise introduced by transient workload bursts.
Building upon this, a multi-scale temporal feature encoder is employed to simultaneously capture short-term
fluctuations, periodic behaviors, and long-range temporal dependencies. This encoder integrates hierarchical
receptive fields and temporal dilations to represent dynamic evolution patterns more comprehensively than
single-scale architectures.

The second stage focuses on structural dependency modeling. Given that modern microservice architectures
exhibit strong inter-service coupling and evolving topologies, we construct a graph-based representation to
encode both stable and transient dependencies. A dynamic graph learning mechanism adaptively updates
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edge weights based on recent interaction patterns, enabling the model to track time-varying relationships
among backend components.

Next, the extracted temporal features and structural embeddings are fused within a joint latent space inference
module. This component learns a unified probabilistic representation of system behaviors, allowing the
detection model to recognize subtle deviations that may only be apparent when temporal and structural cues
are jointly considered.

Finally, a variational distribution inference mechanism is applied to estimate uncertainty-aware anomaly
probabilities. By generating both aleatoric (data-induced) and epistemic (model-induced) uncertainty
measures, the system not only detects anomalies but also indicates how confident the model is about each
decision. This is especially crucial in highly dynamic and non-stationary cloud environments, where
ambiguous states, partial failures, and noisy signals frequently occur. The integration of uncertainty
quantification provides valuable interpretability, helping operators differentiate between high-risk events and
low-confidence predictions that may require further investigation.

The complete model architecture and data-processing pipeline are illustrated in Figure 1.
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Figure 1. Overall model architecture
Assume that the monitoring indicator sequence of the cloud backend system is represented as

X = {xt',xf,...,xt" }; , Where xf € R represents the i-th indicator vector at time ¢. First, the input data is
normalized and feature mapped to obtain a stable representation in the feature space:

hl =Re LUW,x! +b,)

Here, W, and b, are learnable weight and bias parameters, respectively, and RELU(-) 1is a linear
rectification function. This step is used to suppress gradient imbalance caused by abnormal fluctuations and
provide low-noise feature input for subsequent structural modeling.

In the temporal modeling stage, to capture local changes and global trends, this study constructs a multi-scale
temporal dependency representation, encoding temporal dynamics through a combination of convolution and
attention at different scales. The multi-scale temporal aggregation process can be expressed as:

K
Z = Z a, -Conv, (h,_;.)

k=1
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Where Conv, () represents the convolution operation with a kernel size of &k, and a, is a dynamic
learnable weight, which is used to adaptively allocate attention weights between different time scales,
thereby achieving multi-granularity temporal feature fusion.

Considering the complex dependencies between service nodes in the backend system, the model further
constructs a dynamic graph representation G, = (V, Et> at the structural level, where ¥ is the node set and

E

. 1s the edge set at time ¢. The propagation and aggregation of neighborhood features are achieved

through the graph convolution mechanism, and its node update rule is defined as:

ht(H-l) = U(Alhl‘(l)w;)

Where 4, is the adjacency matrix at time ¢, /4 represents the node representation at layer /, W, is the
graph convolution weight, and o(-) is the nonlinear activation function. This mechanism can dynamically
capture the evolving characteristics of topological relationships between services and provide structural
information support for anomaly propagation modeling.

In the latent space inference stage, in order to simultaneously characterize deterministic features and potential
uncertainties, this study introduces a variational distribution estimation mechanism, treating the implicit
representation as a latent random variable z, ~ and approximating the posterior distribution through

variational inference:

Ly = Eq,(z,\x,)[log Polx, | Z:)]_
KL(q¢(zr I x; )Hp(zl ))

Here, ¢,(z,|x,) is the encoder's approximate posterior distribution, p,(x,|z,) is the decoder's

reconstructed distribution, and KL(-) represents the Kullback — Leibler divergence, which constrains the
consistency of the latent distribution with the prior. By maximizing this variational lower bound, the model
can learn probabilistic latent representations in high-dimensional input spaces, adaptively capturing
uncertainty.

To further improve the interpretability of anomaly identification, this study defines an uncertainty-aware
anomaly scoring function to measure the degree of deviation within the model prediction confidence interval.

. A~ 112 . . . . .
Let the reconstruction error be ¢, = ||xt —xt| ,» and its corresponding uncertainty modulation score is defined

as:
S, =¢&,-(1+ B -Var(g,(z, | x,)))

Here, Var () represents the variance of the underlying distribution, and £ is a moderating factor used to

balance reconstruction error and uncertainty contributions. When the system is in a state of high uncertainty,
the variance term amplifies the anomaly score, thereby increasing the model's sensitivity to potential risks.
This mechanism enables anomaly detection to not only be based on observation error but also incorporates
prediction confidence to achieve risk perception and dynamic decision-making.

In summary, the proposed method unifies the modeling of temporal dependencies, structural topology, and
uncertainty distributions, achieving a transition from data-driven anomaly detection to probabilistic
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reasoning-based risk identification. The model demonstrates high robustness and interpretability in non-
stationary and dynamic cloud backend environments, providing essential algorithmic support for the stability
and adaptability of intelligent operation and maintenance systems.

4. Performance Evaluation

This study uses the publicly available dataset named Cloud Infrastructure Anomaly Detection Data as the
basis for method validation. The dataset contains time-series records of multidimensional performance
metrics in cloud infrastructure environments, including CPU utilization, memory usage, disk /O, and
network throughput. It covers monitoring data from multiple virtual machine instances and service nodes.
The data are collected with high temporal resolution, reflecting dynamic fluctuations during system
operation. It serves as a representative source for performance monitoring in cloud backend environments.

In this dataset, anomaly labels are derived from a combination of system alert logs and resource threshold
rules. They cover various common fault types such as resource bottlenecks, network congestion, service
node failures, and performance surges. These anomalies exhibit consistent correlations across temporal and
topological dimensions, making the dataset suitable for evaluating the model's ability to identify anomaly
propagation paths and assess uncertainty. Moreover, the dataset supports flexible partitioning into subsets
across different service modules or metric dimensions, which facilitates testing the model's generalization
ability in multi-domain scenarios.

Applying the proposed uncertainty-aware anomaly detection algorithm to the Cloud Infrastructure Anomaly
Detection Data enables the evaluation of its stability and representational capability under high-dimensional,
dynamic, and structurally coupled conditions. The dataset provides rich multi-source metric relationships
and annotated anomalies, allowing comprehensive validation of temporal encoding, graph structural
modeling, and uncertainty estimation modules. Experiments on this dataset verify the algorithm's capacity to
identify potential risks and propagation chains in real cloud backend environments and establish a reliable
foundation for future model deployment in production systems.

This paper first conducts a comparative experiment, and the experimental results are shown in Table 1.

Tablel: Comparative experimental results

Method AUC F1 Recall Precision
CFLOW-AD|21] 0.912 0.845 0.803 0.890
SRR (Self-supervise,
Refine, Repeat)[22] 0.896 0.828 0.790 0.875
IRP (Iterative Refinement 0.902 0.842 0.800 0.885
Process)[23]
Ours 0.935 0.873 0.842 0.908

From the overall results, the proposed uncertainty-aware anomaly detection algorithm significantly
outperforms all comparison models across key metrics. In particular, for the AUC metric, the Ours model
achieves 0.935, showing a clear improvement over CFLOW-AD's 0.912. This indicates a stronger
discriminative capability in distinguishing between normal and abnormal patterns. The result validates the
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necessity of introducing uncertainty modeling in cloud backend environments. By explicitly quantifying
model confidence during prediction, the method effectively identifies potential anomalies and reduces
misjudgments on boundary samples, thereby improving the overall accuracy and reliability of anomaly
detection.

For the F1 metric, the Ours model reaches 0.873, which is approximately 3.1% higher than IRP's 0.842. This
demonstrates that the proposed method achieves a better balance between precision and recall. Given the
diverse anomaly types and high noise levels in backend systems, traditional methods often face conflicts
between detection sensitivity and false alarm rates. The uncertainty modulation mechanism in this study
dynamically adjusts anomaly confidence intervals, enabling the model to maintain stable decision boundaries
under complex distributions. This mechanism enhances both the robustness and interpretability of anomaly
detection in multidimensional metric interaction environments.

In terms of recall and precision, the Ours model achieves 0.842 and 0.908, respectively, outperforming all
baseline methods. The higher recall indicates the model's strong capability in capturing anomalies and
identifying potential risk events in the system. Meanwhile, the higher precision reflects its stronger ability to
distinguish normal states, leading to fewer false alarms. These advantages stem from the integration of
temporal feature extraction and structural dependency modeling. The dynamic graph mechanism effectively
captures latent topological relationships among service nodes, allowing for more accurate representation of
anomaly propagation paths and improved sensitivity to genuine abnormal patterns.

Overall, the proposed uncertainty-aware anomaly detection framework achieves simultaneous improvement
in detection performance and stability in cloud backend scenarios. The experimental results show that the
method not only excels in individual metrics but also demonstrates superior consistency across multiple
dimensions. By incorporating probabilistic uncertainty modeling and structure-aware dependency
mechanisms, the Ours model exhibits stronger generalization and reliability in highly dynamic, multi-source,
and non-stationary environments, providing a new algorithmic pathway and theoretical foundation for
anomaly detection in intelligent operations and maintenance systems.

This paper also evaluates the robustness under load burst and resource jitter scenarios. The experimental
results are shown in Figure 2.
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Figure 2. Robustness evaluation under load burst and resource jitter scenarios
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In scenarios involving load surges and resource fluctuations, the model exhibits distinct performance
variations with changing stress levels. Overall, the AUC metric shows a slight decline under high-load
conditions but remains generally stable, indicating that the model maintains strong discriminative capability
even in complex operational states. This trend reflects the model's ability to preserve consistent separation
between normal and abnormal samples within the probabilistic feature space. Even when input distributions
are perturbed by resource fluctuations, the global uncertainty estimation remains stable, demonstrating the
model's adaptability to dynamic changes in backend systems.

The F1 metric rises slightly during moderate stress levels and then gradually decreases under high load. This
suggests that the adaptive threshold mechanism helps balance recall and precision under mild disturbances,
forming a temporary performance improvement region. The non-monotonic pattern indicates that uncertainty
modulation allows the model to self-correct its confidence levels in dynamic environments. It enhances
anomaly recognition accuracy during mild fluctuations while reducing false alarms under extreme loads
through confidence-based constraints, thereby maintaining overall detection stability.

The recall metric decreases sharply in the early stages and then stabilizes, showing that certain anomaly
patterns are difficult to capture when sudden load surges cause distribution shifts. However, as uncertainty
estimation and structural dependency updates take effect, the separability of anomalies in the latent space
gradually recovers. This demonstrates that the model achieves adaptive feature reconstruction through
dynamic graph structures and temporal consistency constraints, enabling resilient anomaly detection under
continuous interference.

The precision metric shows only a slight decline, indicating that the model effectively suppresses false alarms
even in high-noise conditions. This improvement results from the uncertainty-weighted inference mechanism,
which dynamically penalizes high-variance predictions. As a result, the model reduces misclassification of
boundary samples, improving the reliability and interpretability of anomaly detection. Overall, the results
confirm that the proposed method maintains stable detection performance and strong adaptability under
complex conditions of load surges and resource fluctuations, validating the robustness advantage of
uncertainty-aware modeling in cloud backend anomaly detection tasks.

5. Conclusion

This study addresses the challenges of complex coupling among multidimensional metrics, dynamic system
dependencies, and diverse anomaly patterns in cloud backend environments by proposing an uncertainty-
aware anomaly detection framework. The method unifies the modeling of temporal dependencies, structural
relationships, and uncertainty distributions, achieving a transition from deterministic judgment to
probabilistic reasoning. It effectively tackles the difficulty of anomaly identification in highly dynamic and
non-stationary environments. The results show that the proposed framework maintains stable detection
performance under conditions such as load fluctuation, resource jitter, and topology changes. It provides a
feasible algorithmic foundation for the stable operation of cloud computing platforms, intelligent operation
and maintenance systems, and large-scale service architectures.

At the technical level, the core contribution of this study lies in integrating uncertainty modeling into the
entire anomaly detection process. Through variational inference and confidence quantification, the
framework achieves a unified representation of prediction and risk assessment. The model can adaptively
respond to input perturbations and potential noise while capturing the dynamic evolution of anomaly patterns
in the latent space. This paradigm shift from "result confidence" to "structural confidence" overcomes the
limitations of traditional anomaly detection methods that rely solely on error judgments or fixed thresholds. It
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provides new theoretical support for system health assessment, service elasticity scheduling, and risk
prediction.

At the application level, the proposed method offers important insights for intelligent operation and
maintenance as well as cloud backend management. By explicitly quantifying the uncertainty distribution of
system operation, the model enables confidence-based anomaly prioritization, hierarchical risk handling, and
dynamic resource allocation. This facilitates the evolution of cloud platforms toward self-diagnosis and self-
recovery. Moreover, the proposed approach can be extended to anomaly monitoring and performance
prediction tasks in distributed computing, edge computing, and multi-tenant environments, supporting
intelligent control and interpretable decision-making in complex systems. Especially under the growing
availability of multimodal operational data, the modeling paradigm presented in this work is expected to
provide a unified probabilistic framework for cross-modal and cross-layer anomaly detection.

Future research can be further expanded in three directions. First, reinforcement learning or causal inference
mechanisms may be incorporated to explore the model's ability to perform active intervention in closed-loop
anomaly decision-making. Second, uncertainty-aware mechanisms can be combined with federated learning
and privacy-preserving modeling to achieve distributed anomaly detection across cloud or cross-domain
scenarios. Third, large-scale and multi-task environments can be used to evaluate the scalability and
transferability of the model, leading to the development of self-evolving detection systems for real-world
industrial applications. Overall, this study provides a new theoretical pathway and practical paradigm for
uncertainty-driven intelligent detection and has long-term implications for the advancement of cloud-based
intelligent operations, trustworthy Al, and adaptive system management.
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