

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 4, No. 1, 2024

1

An Efficient Parallel FP-Growth Algorithm for Big Data Association

Rule Mining

John Michael Smith

Texas A&M University

Johnms0@gmail.com

Abstract:

The FP-Growth algorithm is a proficient method for correlation analysis, notable for its ability to

operate without generating candidate sets and requiring only two database scans. In practical

applications, it can represent transaction data within a compressed FP-Tree in memory. This

approach addresses the limitations of the Apriori algorithm by decreasing the number of database

scans and reducing the candidate sets. However, when applied to large datasets, the FP-Growth

algorithm can lead to an excessively large tree structure, straining memory capacity.To address this

issue, this paper introduces a parallel FP-Growth algorithm tailored for a big data framework,

known as the MRFPG algorithm. This algorithm incorporates load balancing and utilizes

intermediate agents to distribute transaction data fragments across a computer cluster. Each node

then initiates a map-reduce process to filter out non-frequent items and identify all frequent patterns.

Compared to the traditional FP-Growth algorithm, the MRFPG algorithm significantly reduces I/O

overhead. Experimental results demonstrate that the MRFPG algorithm is both efficient and rapid.

Keywords:

Big Data, Association Rules, Parallel computing.

1. Introduction

Data mining, also known as the knowledge discovery in the database (KDD), was first proposed at

the Eleventh International Joint Academic Conference on artificial intelligence in 1989[1]. Through

continuous development, people define it as a process of finding valuable information and knowledge

from mass data. In a simple way, it is in a way that a data model of interest to the user is found in a

mass of data. In data mining, there is a very important research topic of association rule mining, and

association rule mining can find possible in massive data[2]. It means that in a thing database D, we

can get the interesting correlation between data and project in terms of computing the degree of

support and confidence of transactions. Those sets that support and confidence are larger than user

set initial threshold are the association rules we are looking for.

There are two key steps in association rules, one is the discovery of frequent itemsets and the other is

the discovery of association rules. Apriori and FP-Growth algorithms are often used when dealing

with single - dimensional association rules. The two algorithms are based on serialized single machine

algorithm. When data volume reaches a certain level, the computation efficiency is very low, which

takes up a lot of I/O resources and costs. At present, there are some scholars to study the efficiency

of the improved algorithm, some new research has been proposed as a kind of improved FP-Growth

algorithm proposed by Zeng et al in the literature, the algorithm tries to remove the two fork tree

steps, although it reduces computer I/ O overhead, but reduces the accuracy of algorithm[3]. There

are also some scholars put forward a two-dimensional table based on improved FP-Growth

algorithm[4], the algorithm is from a certain extent, improve the efficiency of the original algorithm,

reduce the number of scanning database, but there is a significant defect in two-dimensional table.

When two key candidates have the same key candidates, that is, if any two rows in the table are the

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 4, No. 1, 2024

2

same, they will not be able to be represented by two-dimensional tables, which also leads to the

limitation of the algorithm. In 2015, Rathi and Sheetal proposed the implementation of algorithm

using multiple GPU XML data FP-Growth algorithm[5], which reduced the utilization rate of GPU

to a certain extent, but under the condition of too much data, requirements for the operation

environment was too high.

To solve the above problems, this paper proposes an improved FP-Growth algorithm (proposed

parallel load balancing algorithm FP-Growth --MRFPG algorithm based on big data framework), the

algorithm set up an intermediate layer to count the idle servers, put the idle servers into a set, and

distribute the tasks to the idle servers sequentially. The number of each distribution is determined by

the performance of each server, and the threshold can be set in advance. After distributing data to the

server cluster, the map and reduce programs are used to calculate by each server separately. The final

result is aggregated to the main node of the cluster, and the final frequent itemsets are obtained.

2. Related description

2.1 MapReduce Computational framework

MapReduce is a computing framework proposed by Google in 2004, which is actually a programming

mode that can process massive data in parallel[6]. When dealing with a task, MapReduce needs to

divide the task process into two steps: map and reduce. The key value pair is the manifestation of

input and output at every stage. The working principle of Mapreduce is setting a large data set into

small data set and "divide and rule" based on a certain strategy, then only the programmer defined

map function and reduce function, map is responsible for processing the data of each block, reduce

is responsible for the specification of summary of the calculated results[7], you can get the result you

want finally, MapReduce specific working principle as shown in figure 1.

Figure 1 MapReduce execution flow chart

2.2 Basic concepts of association rules

Association rule mining is the discovery of user interested models from massive data. Through this

model, we can find some associated between seemingly unrelated data in databases[8]. The most

classic case of association rules is the beer and diapers shopping case, this case is a story from the

WAL-MART Supermarket: WAL-MART has analyzed the last year's shopping data in a data

warehouse and was surprised to find that the goods bought with the diapers were beer[9]. According

to this discovery, WAL-MART supermarket has adjusted the layout of the goods and gained a huge

profit.

Association rules can be simply expressed as two disjoint sets of A and B in the direct relationship

between. Two important concepts of association analysis are support and confidence, Support s refers

to the transaction support project set A and the project set B are s% in the transaction database D;

Confidence is expressed in C, and C indicates that transactions with c% in D support the project set

A while supporting the project set B. Support degree refers to the degree of frequent occurrence of a

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 4, No. 1, 2024

3

transaction in transaction database, it is the yardstick for measuring the scope of association rules.

Confidence is the accuracy of a certain association rule, and it is the yardstick for measuring the

strength of rules in association rules. Their expressions of support and confidence are shown as

follows (1) and (2), where D (X) is the number of transactions of X in the database D, and D is a set

of things.

Support（A→B）=P（A∪B）=D（X）/ |D| (1)

Confidence（A→B）=P（B|A）=support（A∪B）/ support（A） (2)

2.3 FP-Growth algorithm

FP-Growth is a classical association rule mining algorithm is proposed by Professor Han Jiawei in

2000, an efficient mining association analysis algorithm does not generate candidate frequent itemsets,

the algorithm by using FP-Tree data structure, the frequent item in the transaction has been

compressed to FP-tree in the form of node, prefix the same path and can share this by tailoring the

data collection form greatly reduces the overhead of I/O [10], compared with Apriori algorithm, to

improve the efficiency of a class.

The FP-Growth algorithm is described as follows:

1) Firstly scan a transaction database to generate 1- frequent itemsets and put them in a List table in

descending order.

2) Create a root node and label it as null, then scan the original transaction database again, and get

the item set arranged according to the order in List list, then recursively call FP-growth to achieve

FP-tree growth.

3) Add a header_table in FP-tree and connect the same item in FP-tree. Find the prefix path (CPB)

containing the item from bottom to top in FP-tree.

4) Constructing the condition FP-tree, accumulating the frequent count of item on each CPB, filtering

the item below the threshold value, and constructing FP-Tree.

3. MRFPG algorithm

3.1 MRFPG algorithm ideas and steps

The idea of the MRFPG algorithm is to divide it into several partitions based on the size of the original

database, and the threshold can be set in advance. Then, we set up an intermediate layer to count the

idle servers, that is, servers that have returned to the calculated results. The idle servers are put into a

set, and the tasks are distributed to the idle servers in sequence. The number of each distribution is

determined by the performance of each server. After distributing data to the server cluster, the map

and reduce programs are calculated individually, and the computation is completed by each server

individually. Finally, the results are aggregated to the main node of the cluster, and the final frequent

itemsets are obtained.

The MRFPG algorithm steps are as follows:

1) Divide the transaction database into several data fragments, which called shard, which are balanced

by load and distributed to P nodes.

2) Scan the database for the first time, the use of MapReduce computing framework, removed shard

of 1) to mapper, from Input=<key, value=Ti>, output=<key=aj, value=1> (wherein Ti represents each

transaction in shard), When all the mapper in the cluster is finished, all the keys on the key=aj assigned

to the same reducer, and a summation, eventually get frequent itemsets list List, structure shown in

figure 2.

3) The items in List are divided into n groups. They are put into G_list and G_list respectively. Each

group is assigned a ID, and each ID contains a set of item sets. The structure diagram is shown in

Figure 3.

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 4, No. 1, 2024

4

Figure 2 MapReduce processing for Shard

Figure 3 List packet

4) Use MapReduce again. The database is partitioned by mapper, it divides every transaction in the

shard database partition in 1) into a single item, and each item according to the G_list mapping to

appropriate groups, finally will belong to the same group of data onto the same reducer, finally get

the frequent pattern. (<key=group-id ， value={{ValueList1} ， {ValueList2} ，

… ，

{ValueListN}}>→<key=item，reduce ={contains the Top K Frequent Patterns}> of the item, and

the structure is shown in Figure 4.

Figure 4 uses MapReduce to get the final frequent itemsets

5) The higher sup frequent pattern is taken as key, and the highest sup frequent pattern containing the

key is output. Finally, the results obtained from all mapper are aggregated through reducer, and the

output diagram is shown in Figure 5.

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 4, No. 1, 2024

5

Figure 5 summary results

3.2 MRFPG algorithmic description

Algorithm: MRFPG algorithm

Input: the transaction database D and the minimum support threshold min_sup

Output: all frequent patterns

//Procedure

Load FPGrowthDriver;

Run PFPGrowth;

1. setLoadbalancing();

2.startParallerCounting(){

ParallerCountingMapper;

ParallerCountingReducer;}

3.readFList()&saveFList()

4.startParallerFPGrowth()

ParallerFPGrowthMapper;

ParallerFPGrowthReducer;

5.startAggregating();

AqqreqatorMapper;

AqqreqatorReduce;

//Map

protected void map(LongWritable offset, Text input, Context context) throws IOException,

InterruptedException {String[] items = splitter.split(input.toString());

Set<String> uniqueItems = Sets.newHashSet(Arrays.asList(items));

for (String item : uniqueItems) {if (item.trim().isEmpty()) {

continue;}

context.setStatus("Parallel Counting Mapper: " + item);

context.write(new Text(item), ONE)

//Reduce

protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws

IOException, InterruptedException {long sum = 0;for (LongWritable value : values) {

context.setStatus("Parallel Counting Reducer :" + key); sum += value.get();}

context.setStatus("Parallel Counting Reducer: " + key + " => " + sum);

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 4, No. 1, 2024

6

context.write(key, new LongWritable(sum));}

// Load balancing pseudo code

freeServer = server.setIdentity(id);

server.send(freeServer);

LinkedList<Int> workers = new LinkedList<Int>();

serverItem.recv();

workers.addLast(workerID);

3.3 MRFPG algorithm example

The set transactional database is shown in Table 1, the minimum support threshold value is 60%, the

minimum support is 5*60%=3, so the item of the support count >=3 is Frequent Item.

Table 1

TID Data

t1 f,a,c,d,g,I,m,p

t2 a,b,c,f,l,m,o

t3 b,f,h,j,o

t4 b,c,k,s,p

t5 a,f,c,e,l,p,m,n

Suppose there is a computer cluster composed of a master and a slave two machine. Now let them

parallelism to calculate the above database and find out all frequent itemsets. According to table 1

and min_sup, we can exclude non frequent 1 itemsets. Finally, we get frequent 1 itemsets of f_1={f:4,

c:4, a:3, b:3, m:3, p:3}, scan the database again, delete the non frequent items, and arrange them in

descending order of support, and get data as shown in Table 2.

Table 2

TID Data

t1 f,c,a,m,p

t2 f,c,a,b,m

t3 f,b

t4 c,b,p

t5 f,c,a,m,p

After scanning the database to get Table 2, the transaction in f_1 is divided into two groups according

to the transaction location. G_list={{G1: (f:4), (c:4), (a:3)}, {G2: (b:3), (m:3), and (p:3)}}.maper are

first derived from the third steps of the algorithm step. The form of the Hash table is shown in Table

3.

Table 3

Key Value

f G1

c G1

a G1

b G2

m G2

p G2

The transaction is split into a single item array according to the fourth steps in the algorithm step, and

the data is shown as shown in Table 4.

Table 4

Item array Data

a1[] {f,c,a,m,p}

a2[] {f,c,a,b,m

a3[] {f,b}

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 4, No. 1, 2024

7

a4[] {c,b,p}

a5[] {f,c,a,m,p}

After getting the item array, according to the MapReduce computing framework, put a1, a2 and a3

into a shard, a4 and a5 into a shard. According to step 4, see which group belongs to each group in

the transaction T and send it to the corresponding group. According to the FP-Tree bottom-up

traversal method, traversing each group of elements, the first item to get is p, look at the Hash table,

p belongs to G2, so it will output with G2, and delete all item that belongs to G2 in the hash table. At

this time, Hash table has only the G1 belonging to G1. Then traversing to m, it is found that the G2

of the M item has been sent, so there is no need to send again and return to the continued traversal.

In the same way, continue to traverse all items until the Hash table is empty. After that, reducer is

processed according to the results of maper, and the input of each reducer is the set of transactions in

each Group. Finally, in each machine for processing the FP-Tree data structure on the distribution of

data to generate native LFP-Tree (due to space issues, not detailed details), finally to find all frequent

item {{f}: 4, {c}: 4, {a}: 3, {b}: 3, {m}: 3, {p}: 3. {f, c}: 3, {f: 3, a}, {f, m}: 3{c, a}: 3, {c: 3, m},

{c, p}: 3, {a: 3, m}, {f, C, a}: 3, {f, C, m}: 3, {f, a, m}: 3. {c, a, m}: 3, {f, C, a, m}: 3}.

4. Experimental results and analysis

In this paper, the MRFPG algorithm is compared with the AFIM algorithm, and the AFIM algorithm

is realized by using Eclipse.

Experimental environment: Intel (R) Core (TM) i7-6700HQ, 3.50GHz master frequency, 16G

installed memory, 1T hard disk space, 64 bit window7 operating system. The computer are equipped

with VMware Workstation Pro virtual machine, and installed a master and a slave CentOS operating

system, to build a Hadoop cluster, including 1 NameNode and 8 DataNode, and the configuration of

the Hadoop runtime environment, Hadoop version is 2.5.2, JDK version is 1.7.0. Sales data for the

experimental data are from a supermarket in October 2007, each record represents a consumer

shopping list, transaction data D represents the list of all the shopping, consumers every time shopping

on behalf of a transaction, consumers buy goods is a transaction.

This experiment is to test the MRFPG algorithm through the MapReduce computing framework in

Hadoop. By load balancing, we allocate different number of node clusters to operate different size

data sets and mine frequent itemsets. In the experiment, two data sets, T1 and T2, were allocated

randomly. T1 contained 9691 data, and T2 contained 15273 data. The number of nodes per cluster

increased by 2, so as to observe the relationship between the number of nodes and computation

efficiency. Finally, the experimental results of T1 and T2, as shown in Figure 6 and Figure 7, show

that the mining efficiency will increase with the increase of the number of nodes in the Hadoop cluster.

Then, we compare the MRFPG algorithm to deal with the total time of transaction execution and the

execution time comparison of AFIM algorithm to deal with this transaction by setting different

minimum support degrees. The result is shown in Figure 8. At the end of the experiment, the

scalability of each algorithm is compared. The comparison results show that the efficiency and

scalability of the distributed parallel processing MRFPG algorithm based on big data is obviously

higher than that of the AFIM algorithm.

Figure 6 T1 parallel computing time

30000

20000

10000

0

2 4 6 8

Number of nodes

Ti
m

e(
m

s)

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430
Vol. 4, No. 1, 2024

8

Figure 7 T2 parallel computing time

Figure 8 execution time of MRFPG algorithm

5. Conclusion

This paper initially addresses the limitations of the FP-Growth algorithm when handling large-scale

data mining. It then elucidates the operational principles of the MapReduce computing framework.

Following this, the paper introduces a parallel MRFPG algorithm, designed within a big data

framework, providing a comprehensive explanation and illustration.

The MRFPG algorithm leverages load balancing distributed technology and the FP-tree data

structure to swiftly extract frequent itemsets from extensive transaction data. Its mining efficiency

improves proportionally with the number of nodes in a Hadoop cluster. Experimental results

indicate that the MRFPG algorithm outperforms the AFIM algorithm in efficiency and demonstrates

excellent scalability.

Acknowledgements

This research is supported by the research fund for humanities and social sciences of the ministry of

education under grant No.19XJA910001 and the humanities and social sciences research project of

chongqing education commission under grant No. 18SKGH099.

References

[1] Han J W, Micheline K. Concept and technology of data mining[M]. Beijing: Machinery Industry

Press, 2013.

[2] Cui Yan, ZQ Bao. Summary of association rules [J]. Computer application research, 2016,

33(02):33-37.

[3] Zeng,Y,Yin S,Liu J,Zhang M. Research of improved FP-growth algorithm in association rules

mining[J]. Scientific Programming, 2015, 46(10),281-285.

[4] Yan Yun, YX Luo. Improvement of FP-Tree algorithm [J]. Computer engineering and design,

2010,31(07):1506-1510.

[5] Rathi,Sheetal,Dhote,C.A. Parallel implementation of FP growth algorithm on XML data using

multiple GPU[J]. Advances in Intelligent Systems and Computing, 2015.8, 339,581-589.

[6] Tsai,Chih-Fong. Big data mining with parallel computing:A comparison of distributed and

MapReduce methodologies[J]. Journal of Systems and Software, 2016,122,83-92.

[7] DEAN J,GHEMAWAT S. MapReduce:simplified data processing on large clusters[J].

Communications Of The ACM, 2008,51(1):107-113.

[8] SH Li, ZW Lv, DY Che. Maximum frequent itemset mining algorithm based on ordered FP-

tree[J]. Northeast Normal University newspaper (NATURAL SCIENCE), 2016,48(2):65-69.

[9] Pang-NingT, VipinK, Michael S. Introduction to Data Mining[M]. Beijing:People's post and

Telecommunications Press, 2011.

[10] LJ Zhou, X Wang. Research on association rules algorithm in cloud environment[J]. Computer

engineering and design, 2014,35(02):499-503.

AFIM Algorithm MRFPG Algorithm

50000

40000

30000

20000

10000

0

0.5 1 1.5 2

Minimum support count

Ti
m

e(
m

s)

	Abstract:
	Keywords:
	1. Introduction
	2. Related description
	3. MRFPG algorithm
	4. Experimental results and analysis
	5. Conclusion
	Acknowledgements
	References

