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Abstract: 

The FP-Growth algorithm is a proficient method for correlation analysis, notable for its ability to 

operate without generating candidate sets and requiring only two database scans. In practical 

applications, it can represent transaction data within a compressed FP-Tree in memory. This 

approach addresses the limitations of the Apriori algorithm by decreasing the number of database 

scans and reducing the candidate sets. However, when applied to large datasets, the FP-Growth 

algorithm can lead to an excessively large tree structure, straining memory capacity.To address this 

issue, this paper introduces a parallel FP-Growth algorithm tailored for a big data framework, 

known as the MRFPG algorithm. This algorithm incorporates load balancing and utilizes 

intermediate agents to distribute transaction data fragments across a computer cluster. Each node 

then initiates a map-reduce process to filter out non-frequent items and identify all frequent patterns. 

Compared to the traditional FP-Growth algorithm, the MRFPG algorithm significantly reduces I/O 

overhead. Experimental results demonstrate that the MRFPG algorithm is both efficient and rapid. 
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1. Introduction 

Data mining, also known as the knowledge discovery in the database (KDD), was first proposed at 

the Eleventh International Joint Academic Conference on artificial intelligence in 1989[1]. Through 

continuous development, people define it as a process of finding valuable information and knowledge 

from mass data. In a simple way, it is in a way that a data model of interest to the user is found in a 

mass of data. In data mining, there is a very important research topic of association rule mining, and 

association rule mining can find possible in massive data[2]. It means that in a thing database D, we 

can get the interesting correlation between data and project in terms of computing the degree of 

support and confidence of transactions. Those sets that support and confidence are larger than user 

set initial threshold are the association rules we are looking for. 

There are two key steps in association rules, one is the discovery of frequent itemsets and the other is 

the discovery of association rules. Apriori and FP-Growth algorithms are often used when dealing 

with single - dimensional association rules. The two algorithms are based on serialized single machine 

algorithm. When data volume reaches a certain level, the computation efficiency is very low, which 

takes up a lot of I/O resources and costs. At present, there are some scholars to study the efficiency 

of the improved algorithm, some new research has been proposed as a kind of improved FP-Growth 

algorithm proposed by Zeng et al in the literature, the algorithm tries to remove the two fork tree 

steps, although it reduces computer I/ O overhead, but reduces the accuracy of algorithm[3]. There 

are also some scholars put forward a two-dimensional table based on improved FP-Growth 

algorithm[4], the algorithm is from a certain extent, improve the efficiency of the original algorithm, 

reduce the number of scanning database, but there is a significant defect in two-dimensional table. 

When two key candidates have the same key candidates, that is, if any two rows in the table are the 
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same, they will not be able to be represented by two-dimensional tables, which also leads to the 

limitation of the algorithm. In 2015, Rathi and Sheetal proposed the implementation of algorithm 

using multiple GPU XML data FP-Growth algorithm[5], which reduced the utilization rate of GPU 

to a certain extent, but under the condition of too much data, requirements for the operation 

environment was too high. 

To solve the above problems, this paper proposes an improved FP-Growth algorithm (proposed 

parallel load balancing algorithm FP-Growth --MRFPG algorithm based on big data framework), the 

algorithm set up an intermediate layer to count the idle servers, put the idle servers into a set, and 

distribute the tasks to the idle servers sequentially. The number of each distribution is determined by 

the performance of each server, and the threshold can be set in advance. After distributing data to the 

server cluster, the map and reduce programs are used to calculate by each server separately. The final 

result is aggregated to the main node of the cluster, and the final frequent itemsets are obtained. 

2. Related description 

2.1 MapReduce Computational framework 

MapReduce is a computing framework proposed by Google in 2004, which is actually a programming 

mode that can process massive data in parallel[6]. When dealing with a task, MapReduce needs to 

divide the task process into two steps: map and reduce. The key value pair is the manifestation of 

input and output at every stage. The working principle of Mapreduce is setting a large data set into 

small data set and "divide and rule" based on a certain strategy, then only the programmer defined 

map function and reduce function, map is responsible for processing the data of each block, reduce 

is responsible for the specification of summary of the calculated results[7], you can get the result you 

want finally, MapReduce specific working principle as shown in figure 1. 

Figure 1 MapReduce execution flow chart 

2.2 Basic concepts of association rules 

Association rule mining is the discovery of user interested models from massive data. Through this 

model, we can find some associated between seemingly unrelated data in databases[8]. The most 

classic case of association rules is the beer and diapers shopping case, this case is a story from the 

WAL-MART Supermarket: WAL-MART has analyzed the last year's shopping data in a data 

warehouse and was surprised to find that the goods bought with the diapers were beer[9]. According 

to this discovery, WAL-MART supermarket has adjusted the layout of the goods and gained a huge 

profit. 

Association rules can be simply expressed as two disjoint sets of A and B in the direct relationship 

between. Two important concepts of association analysis are support and confidence, Support s refers 

to the transaction support project set A and the project set B are s% in the transaction database D; 

Confidence is expressed in C, and C indicates that transactions with c% in D support the project set 

A while supporting the project set B. Support degree refers to the degree of frequent occurrence of a 
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transaction in transaction database, it is the yardstick for measuring the scope of association rules. 

Confidence is the accuracy of a certain association rule, and it is the yardstick for measuring the 

strength of rules in association rules. Their expressions of support and confidence are shown as 

follows (1) and (2), where D (X) is the number of transactions of X in the database D, and D is a set 

of things. 

Support（A→B）=P（A∪B）=D（X）/ |D| (1) 

Confidence（A→B）=P（B|A）=support（A∪B）/ support（A）  (2) 

2.3 FP-Growth algorithm 

FP-Growth is a classical association rule mining algorithm is proposed by Professor Han Jiawei in 

2000, an efficient mining association analysis algorithm does not generate candidate frequent itemsets, 

the algorithm by using FP-Tree data structure, the frequent item in the transaction has been 

compressed to FP-tree in the form of node, prefix the same path and can share this by tailoring the 

data collection form greatly reduces the overhead of I/O [10], compared with Apriori algorithm, to 

improve the efficiency of a class. 

The FP-Growth algorithm is described as follows: 

1) Firstly scan a transaction database to generate 1- frequent itemsets and put them in a List table in 

descending order. 

2) Create a root node and label it as null, then scan the original transaction database again, and get 

the item set arranged according to the order in List list, then recursively call FP-growth to achieve 

FP-tree growth. 

3) Add a header_table in FP-tree and connect the same item in FP-tree. Find the prefix path (CPB) 

containing the item from bottom to top in FP-tree. 

4) Constructing the condition FP-tree, accumulating the frequent count of item on each CPB, filtering 

the item below the threshold value, and constructing FP-Tree. 

3. MRFPG algorithm 

3.1 MRFPG algorithm ideas and steps 

The idea of the MRFPG algorithm is to divide it into several partitions based on the size of the original 

database, and the threshold can be set in advance. Then, we set up an intermediate layer to count the 

idle servers, that is, servers that have returned to the calculated results. The idle servers are put into a 

set, and the tasks are distributed to the idle servers in sequence. The number of each distribution is 

determined by the performance of each server. After distributing data to the server cluster, the map 

and reduce programs are calculated individually, and the computation is completed by each server 

individually. Finally, the results are aggregated to the main node of the cluster, and the final frequent 

itemsets are obtained. 

The MRFPG algorithm steps are as follows: 

1) Divide the transaction database into several data fragments, which called shard, which are balanced 

by load and distributed to P nodes. 

2) Scan the database for the first time, the use of MapReduce computing framework, removed shard 

of 1) to mapper, from Input=<key, value=Ti>, output=<key=aj, value=1> (wherein Ti represents each 

transaction in shard), When all the mapper in the cluster is finished, all the keys on the key=aj assigned 

to the same reducer, and a summation, eventually get frequent itemsets list List, structure shown in 

figure 2. 

3) The items in List are divided into n groups. They are put into G_list and G_list respectively. Each 

group is assigned a ID, and each ID contains a set of item sets. The structure diagram is shown in 

Figure 3. 
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Figure 2 MapReduce processing for Shard 

 
Figure 3 List packet 

4) Use MapReduce again. The database is partitioned by mapper, it divides every transaction in the 

shard database partition in 1) into a single item, and each item according to the G_list mapping to 

appropriate groups, finally will belong to the same group of data onto the same reducer, finally get 

the  frequent  pattern.  (<key=group-id ， value={{ValueList1} ， {ValueList2} ， 

… ， 

{ValueListN}}>→<key=item，reduce ={contains the Top K Frequent Patterns}> of the item, and 

the structure is shown in Figure 4. 

Figure 4 uses MapReduce to get the final frequent itemsets 

5) The higher sup frequent pattern is taken as key, and the highest sup frequent pattern containing the 

key is output. Finally, the results obtained from all mapper are aggregated through reducer, and the 

output diagram is shown in Figure 5. 
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Figure 5 summary results 

3.2 MRFPG algorithmic description 

Algorithm: MRFPG algorithm 

Input: the transaction database D and the minimum support threshold min_sup 

Output: all frequent patterns 

//Procedure 

Load FPGrowthDriver; 

Run PFPGrowth; 

1. setLoadbalancing(); 

2.startParallerCounting(){ 

ParallerCountingMapper; 

ParallerCountingReducer;} 

3.readFList()&saveFList() 

4.startParallerFPGrowth() 

ParallerFPGrowthMapper; 

ParallerFPGrowthReducer; 

5.startAggregating(); 

AqqreqatorMapper; 

AqqreqatorReduce; 

//Map 

protected void map(LongWritable offset, Text input, Context context) throws IOException, 

InterruptedException {String[] items = splitter.split(input.toString()); 

Set<String> uniqueItems = Sets.newHashSet(Arrays.asList(items)); 

for (String item : uniqueItems) {if (item.trim().isEmpty()) { 

continue;} 

context.setStatus("Parallel Counting Mapper: " + item); 

context.write(new Text(item), ONE) 

//Reduce 

protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws 

IOException, InterruptedException {long sum = 0;for (LongWritable value : values) { 

context.setStatus("Parallel Counting Reducer :" + key); sum += value.get();} 

context.setStatus("Parallel Counting Reducer: " + key + " => " + sum); 
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context.write(key, new LongWritable(sum));} 

// Load balancing pseudo code 

freeServer = server.setIdentity(id); 

server.send(freeServer); 

LinkedList<Int> workers = new LinkedList<Int>(); 

serverItem.recv(); 

workers.addLast(workerID); 

3.3 MRFPG algorithm example 

The set transactional database is shown in Table 1, the minimum support threshold value is 60%, the 

minimum support is 5*60%=3, so the item of the support count >=3 is Frequent Item. 

Table 1 

TID Data 

t1 f,a,c,d,g,I,m,p 

t2 a,b,c,f,l,m,o 

t3 b,f,h,j,o 

t4 b,c,k,s,p 

t5 a,f,c,e,l,p,m,n 

Suppose there is a computer cluster composed of a master and a slave two machine. Now let them 

parallelism to calculate the above database and find out all frequent itemsets. According to table 1 

and min_sup, we can exclude non frequent 1 itemsets. Finally, we get frequent 1 itemsets of f_1={f:4, 

c:4, a:3, b:3, m:3, p:3}, scan the database again, delete the non frequent items, and arrange them in 

descending order of support, and get data as shown in Table 2. 

Table 2 

TID Data 

t1 f,c,a,m,p 

t2 f,c,a,b,m 

t3 f,b 

t4 c,b,p 

t5 f,c,a,m,p 

After scanning the database to get Table 2, the transaction in f_1 is divided into two groups according 

to the transaction location. G_list={{G1: (f:4), (c:4), (a:3)}, {G2: (b:3), (m:3), and (p:3)}}.maper are 

first derived from the third steps of the algorithm step. The form of the Hash table is shown in Table 

3. 
 

 

Table 3 

Key Value 

f G1 

c G1 

a G1 

b G2 

m G2 

p G2 

The transaction is split into a single item array according to the fourth steps in the algorithm step, and 

the data is shown as shown in Table 4. 

Table 4 

Item array Data 

a1[] {f,c,a,m,p} 

a2[] {f,c,a,b,m 

a3[] {f,b} 
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a4[] {c,b,p} 

a5[] {f,c,a,m,p} 

After getting the item array, according to the MapReduce computing framework, put a1, a2 and a3 

into a shard, a4 and a5 into a shard. According to step 4, see which group belongs to each group in 

the transaction T and send it to the corresponding group. According to the FP-Tree bottom-up 

traversal method, traversing each group of elements, the first item to get is p, look at the Hash table, 

p belongs to G2, so it will output with G2, and delete all item that belongs to G2 in the hash table. At 

this time, Hash table has only the G1 belonging to G1. Then traversing to m, it is found that the G2 

of the M item has been sent, so there is no need to send again and return to the continued traversal. 

In the same way, continue to traverse all items until the Hash table is empty. After that, reducer is 

processed according to the results of maper, and the input of each reducer is the set of transactions in 

each Group. Finally, in each machine for processing the FP-Tree data structure on the distribution of 

data to generate native LFP-Tree (due to space issues, not detailed details), finally to find all frequent 

item {{f}: 4, {c}: 4, {a}: 3, {b}: 3, {m}: 3, {p}: 3. {f, c}: 3, {f: 3, a}, {f, m}: 3{c, a}: 3, {c: 3, m}, 

{c, p}: 3, {a: 3, m}, {f, C, a}: 3, {f, C, m}: 3, {f, a, m}: 3. {c, a, m}: 3, {f, C, a, m}: 3}. 

4. Experimental results and analysis 

In this paper, the MRFPG algorithm is compared with the AFIM algorithm, and the AFIM algorithm 

is realized by using Eclipse. 

Experimental environment: Intel (R) Core (TM) i7-6700HQ, 3.50GHz master frequency, 16G 

installed memory, 1T hard disk space, 64 bit window7 operating system. The computer are equipped 

with VMware Workstation Pro virtual machine, and installed a master and a slave CentOS operating 

system, to build a Hadoop cluster, including 1 NameNode and 8 DataNode, and the configuration of 

the Hadoop runtime environment, Hadoop version is 2.5.2, JDK version is 1.7.0. Sales data for the 

experimental data are from a supermarket in October 2007, each record represents a consumer 

shopping list, transaction data D represents the list of all the shopping, consumers every time shopping 

on behalf of a transaction, consumers buy goods is a transaction. 

This experiment is to test the MRFPG algorithm through the MapReduce computing framework in 

Hadoop. By load balancing, we allocate different number of node clusters to operate different size 

data sets and mine frequent itemsets. In the experiment, two data sets, T1 and T2, were allocated 

randomly. T1 contained 9691 data, and T2 contained 15273 data. The number of nodes per cluster 

increased by 2, so as to observe the relationship between the number of nodes and computation 

efficiency. Finally, the experimental results of T1 and T2, as shown in Figure 6 and Figure 7, show 

that the mining efficiency will increase with the increase of the number of nodes in the Hadoop cluster. 

Then, we compare the MRFPG algorithm to deal with the total time of transaction execution and the 

execution time comparison of AFIM algorithm to deal with this transaction by setting different 

minimum support degrees. The result is shown in Figure 8. At the end of the experiment, the 

scalability of each algorithm is compared. The comparison results show that the efficiency and 

scalability of the distributed parallel processing MRFPG algorithm based on big data is obviously 

higher than that of the AFIM algorithm. 

 

 

 

Figure 6 T1 parallel computing time 
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Figure 7 T2 parallel computing time 

 

 

 

 

 

 

 

 

 

Figure 8 execution time of MRFPG algorithm 

5. Conclusion 

This paper initially addresses the limitations of the FP-Growth algorithm when handling large-scale 

data mining. It then elucidates the operational principles of the MapReduce computing framework. 

Following this, the paper introduces a parallel MRFPG algorithm, designed within a big data 

framework, providing a comprehensive explanation and illustration. 

The MRFPG algorithm leverages load balancing distributed technology and the FP-tree data 

structure to swiftly extract frequent itemsets from extensive transaction data. Its mining efficiency 

improves proportionally with the number of nodes in a Hadoop cluster. Experimental results 

indicate that the MRFPG algorithm outperforms the AFIM algorithm in efficiency and demonstrates 

excellent scalability. 

Acknowledgements 

This research is supported by the research fund for humanities and social sciences of the ministry of 

education under grant No.19XJA910001 and the humanities and social sciences research project of 

chongqing education commission under grant No. 18SKGH099. 
 

 

References 

[1] Han J W, Micheline K. Concept and technology of data mining[M]. Beijing: Machinery Industry 

Press, 2013. 

[2] Cui Yan, ZQ Bao. Summary of association rules [J]. Computer application research, 2016, 

33(02):33-37. 

[3] Zeng,Y,Yin S,Liu J,Zhang M. Research of improved FP-growth algorithm in association rules 

mining[J]. Scientific Programming, 2015, 46(10),281-285. 

[4] Yan Yun, YX Luo. Improvement of FP-Tree algorithm [J]. Computer engineering and design, 

2010,31(07):1506-1510. 

[5] Rathi,Sheetal,Dhote,C.A. Parallel implementation of FP growth algorithm on XML data using 

multiple GPU[J]. Advances in Intelligent Systems and Computing, 2015.8, 339,581-589. 

[6] Tsai,Chih-Fong. Big data mining with parallel computing:A comparison of distributed and 

MapReduce methodologies[J]. Journal of Systems and Software, 2016,122,83-92. 

[7] DEAN J,GHEMAWAT S. MapReduce:simplified data processing on large clusters[J]. 

Communications Of The ACM, 2008,51(1):107-113. 

[8] SH Li, ZW Lv, DY Che. Maximum frequent itemset mining algorithm based on ordered FP- 

tree[J]. Northeast Normal University newspaper (NATURAL SCIENCE), 2016,48(2):65-69. 

[9] Pang-NingT, VipinK, Michael S. Introduction to Data Mining[M]. Beijing:People's post and 

Telecommunications Press, 2011. 

[10]  LJ Zhou, X Wang. Research on association rules algorithm in cloud environment[J]. Computer 

engineering and design, 2014,35(02):499-503. 

AFIM Algorithm MRFPG Algorithm 

50000 

40000 

30000 

20000 

10000 

0 

0.5 1 1.5 2 

Minimum support count 

Ti
m

e(
m

s)
 


	Abstract:
	Keywords:
	1. Introduction
	2. Related description
	3. MRFPG algorithm
	4. Experimental results and analysis
	5. Conclusion
	Acknowledgements
	References

