

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430

Vol. 4, No. 2, 2024

1

Enhancing Data Recovery in Deduplication Backup Systems: A Novel
Rewriting Algorithm to Minimize Fragmentation Effects

Edward Richardson

Shenandoah University

edwardri@sshenandoah.edu

Abstract:

Deduplication technology detects and eliminates redundant data, significantly conserving disk

space, thus finding extensive applications across various domains. Nevertheless, the removal of

numerous duplicate data blocks leads to data fragmentation, adversely affecting data recovery

performance. To address fragmentation issues, rewriting algorithms have been introduced.

However, current rewriting algorithms fail to precisely identify fragmented blocks. To resolve this

issue, we propose a new rewriting algorithm called MERW. MERW takes into account

fragmentation information on a broader scale and selects the most optimal fragmented blocks.

Consequently, MERW effectively mitigates data fragmentation by accurately rewriting fragmented

blocks. Experimental results demonstrate that MERW enhances recovery performance by 48% and

improves the deduplication ratio by 6%.

Keywords:

Data Deduplication; Fragmentation; Rewriting; Recovery; Backup.

1. Introduction

The explosive growth of information data poses severe challenges to storage technology. There are

many duplicate data in massive data, and storing duplicate data causes a waste of storage space. The

deduplication technology uses a block algorithm to block the data stream [1,2], and saves only the

unique copy of the duplicate data block, thereby greatly saving storage space. Data fragmentation

refers to the continuous data blocks in the data stream are scattered in various locations on the disk

after deduplication. We refer to the sequence of data blocks in the data stream as a logical sequence

and the sequence of data blocks stored on the disk as a physical sequence. The rewrite algorithms [6,

7] are to make the logical sequence and the physical sequence as consistent as possible by rewriting

the fragment blocks, thereby alleviating the fragmentation problem and improving the data recovery

performance. However, rewriting fragmented blocks will reduce the data deduplication ratio [3]. The

deduplication ratio refers to the size of the deleted data compared to the size of the original backup

data. Precise deduplication methods [4] (does not apply any rewriting algorithm) delete every

duplicate block to maximize the deduplication ratio, but the data recovery performance of the

deduplication method is extremely poor. With the development of cloud storage, the index of data

recovery performance becomes more and more important [5]. In this regard, the rewriting algorithms

[6,7] identify fragmented blocks in repeated blocks, and rewrite these fragmented blocks, sacrificing

a certain deduplication ratio in exchange for an improvement in data recovery performance. However,

these rewrite algorithms use the local information of the backup stream (data stream) to identify the

fragmented blocks, resulting in the identified fragmented blocks being not accurate enough. In this

regard, we propose the MERW algorithm. The MERW algorithm uses as much information as

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430

Vol. 4, No. 2, 2024

2

possible in the backup stream to more accurately identify and rewrite fragmented blocks, which

ultimately improves not only the performance of data recovery but also the deduplication ratio.

2. MERW

2.1 System Overview

MERW is divided into three major modules: Information Recording Module (IRM), Optimal

Selection Module (OSM), and Rewriting Module (RM). The information recording module is

responsible for recording the fragmentation information of the data block; the optimal selection

module is responsible for selecting the most fragmented fragment from the fragmentation

information; the rewriting module is responsible for rewriting the fragment selected by the

optimal selection module. The work flow of the three modules is as follows: (i) Each time a new

data block is backed up, the information recording module records the fragmentation degree of the

data block and sorts the data blocks according to the fragmentation degree; (ii) when rewriting is

needed When fragmented blocks are used to improve data recovery performance, the optimal

selection operation is triggered. At this time, the optimal selection module selects the top m most

severely fragmented data blocks in the sorting table; (iii) the rewrite module divides these

fragmented blocks Rewrite to disk.

In the (i) step, the degree of fragmentation of a data block refers to the time cost of reading the data

block during data recovery. The longer the read time, the more severe the fragmentation of the data

block; In (ii), m can be adjusted. The larger m is, the lower the deduplication ratio is, and the better

the data recovery performance is. The smaller m is, the higher the deduplication ratio is, the worse

the data recovery performance is. By dynamically adjusting the value of m, NERW can very well

weigh the relationship between the deduplication ratio and the data recovery performance. In (iii), the

operation of writing fragmented blocks to disk is called rewriting, because a fragmented block must

be A duplicate block, where writing a duplicate block to disk is called overwrite, and writing a unique

block to disk is called write.

2.2 Rewriting the optimal fragmented blocks

Fig.1. Rewriting the optimal fragmented blocks.

As shown in Figure 1, after the nth backup stream is deduplicated, the data blocks in the backup

stream are scattered and stored in various containers [8] on the disk (that is, the gray data blocks in

the figure). A container is a unit that stores several data blocks, and it is used to save the locality of

the backup stream. The capacity of each container in the figure is 3 data blocks, and the white data

blocks represent data blocks in other backup streams. In the process of restoring the n-th backup

stream, reading containers 1, 2, and 3 can recover two data blocks, but reading container 4 can only

recover data block J. The number of data blocks that can be recovered by reading a container can well

reflect the degree of fragmentation. We define the degree of fragmentation as:

Degree = Capacity/numb (1)

In the formula, degree represents the degree of fragmentation, numb represents the gray data blocks

in a container, and the Capacity table indicates the maximum number of data blocks that a container

can store. Then for data blocks A and C, they are fragmented to 1.5. Similarly, for data blocks D and

E, and data blocks G and I, they are all fragmented to 1.5; but for data block J, it is fragmented. The

A L C D E G D M I
J A

the nth backup stream

N O Q

A D G J L
B E H K M

C F I Y J
1 2 3 4 5

N
O

Q
6

disk

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430

Vol. 4, No. 2, 2024

3

degree is 3. The rewrite algorithm selects the most fragmented data blocks and rewrites them. As

shown, the most fragmented data block J is rewritten into the container 5.

By rewriting the fragmented block, when restoring the data block J in the nth backup stream, the data

block can be directly obtained from the container 5 in the memory, because when the previous data

block L is restored, the system has removed the container 5 from the disk. Read into memory. On the

contrary, if the data block J is not rewritten into the container 5, the container 4 needs to be read from

the disk to obtain the data block J, which results in an additional disk IO, which reduces the data

recovery performance.By rewriting the fragmented block, when restoring the data block J in the nth

backup stream, the data block can be directly obtained from the container 5 in the memory, because

when the previous data block L is restored, the system has removed the container 5 from the disk.

Read into memory. On the contrary, if the data block J is not rewritten into the container 5, the

container 4 needs to be read from the disk to obtain the data block J, which results in an additional

disk IO, which reduces the data recovery performance.

3. Evaluation

3.1 Experiment environment

To evaluate the efficiency of the MERW, we implemented the MERW on Destor [9]. The Destor is

an open source project on a deduplication backup system. The None method [3, 9] does not use any

rewrite algorithm to alleviate fragmentation, so we use it as a benchmark for our experiments; the

CRW method [10] coarsely identifies and rewrites fragmented blocks, sacrificing the deduplication

ratio in exchange for data recovery performance improvement However, because the fragments it

recognizes are not accurate enough, its gain is very limited. Fortunately, MERW accurately identifies

and rewrites fragments, which makes up for the shortcomings of CRW, and further improves the data

recovery performance and deduplication ratio. We conducted comprehensive experiments and

comparisons of None, CRW and MERW to prove the efficiency of MERW. The hardware

configuration of the experiment consists of a quad-core CPU (Intel (R) Core (TM) i7-6700 CPU @

3.40GHz), 4G memory and 1000G hard disk. The operating system used in the experiment is CentOS

release 7.4 (Linux version 3.10. 0).

3.2 Workload

Table 1 The dataset characteristics

Attributes Value

Total size 1487GB

Average chunk size 4KB

of versions 15

Average size of one backup 99GB

We use a representative subset of the FSL [11] dataset to deploy our experiments. FSL is a commonly

used dataset [12]. This dataset is collected on the server of Stony Brook University and represents the

real deduplication backup scenario. Data. We analyzed the characteristics of the dataset, and Table 1

lists some important characteristics of the dataset. We performed a total of 15 backups, the average

data size of each backup was 99GB, the total size of the data set used was 1487GB, we used the

content-based variable-length block algorithm [2], and the average block size was 4KB.

3.3 Performance Evaluation

We measure three performance indicators: data recovery performance, deduplication ratio, and

computational overhead. The speed factor [8] reflects the performance of data recovery well. It

represents the number of data blocks that can be recovered by reading a container. The larger the

value of the speed factor, the better the recovery performance. The deduplication ratio refers to the

deletion. The data size is divided by the original data size. The higher the deduplication ratio, the

more storage space can be saved. The calculation overhead refers to the time it takes for the system

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430

Vol. 4, No. 2, 2024

4

to recognize fragmented blocks. The lower the calculation overhead, the better the performance.

Restore performance: Fig.2 (a) shows the speed factor of the three methods, where the abscissa is the

backup id (backup version number) and the ordinate is the speed factor. As shown in the figure,

Baseline has the lowest speed factor. This is because Baseline does not use any rewrite algorithm to

rewrite fragmented blocks. As a result, during the data recovery process, the system frequently

accesses the disk, and frequent disk IO will reduce data recovery performance. (Ie speed factor). The

speed factor of CRW is much higher than the speed factor of Baseline. This is because CRW coarsely

identifies and rewrites fragmented blocks, which alleviates the degree of fragmentation, so its speed

factor has been greatly improved. As we expected, the speed factor of MERW is the highest, because

MERW more accurately recognizes fragmentation than CRW, and rewrites the optimal fragmented

block, thereby further improving data recovery performance. The average speed factors for MERW,

Baseline, and CRW are 3.7, 2.5, and 3.5, respectively.

(a) restore performance

(b) deduplication ratio

(c) computing overhead

Fig. 2 The restore performance, deduplication ratio and computing overhead, driven by the real

workloads

Deduplication ratio: Fig.2 (b) shows the deduplication ratio of the three methods, where the abscissa

is the backup id and the ordinate is the deduplication ratio. As shown in the figure, CRW has the

lowest deduplication ratio. This is because CRW is not accurate enough to identify fragmented blocks,

resulting in rewriting some unnecessary data blocks, thereby wasting disk space. By rewriting the

optimal fragmented block (the most fragmented fragmented block), MERW avoids rewriting

unnecessary data blocks, thereby improving the deduplication ratio. Baseline's deduplication ratio is

the highest, because baseline does not consider the performance of data recovery, it only writes the

unique block to disk, and does not rewrite fragmented blocks. The average deduplication ratios of

NERW, CRW, and Baseline were 0.75, 0.71, and 0.87, respectively.

Computing overhead: Fig.2 (c) shows the computational cost of the three methods. The abscissa is

the backup id, and the ordinate is time. The unit is millisecond. As we expected, Baseline's

computational overhead is 0, because it does not recognize the operation of fragmented blocks at all.

The computational cost of CRW is higher than that of Baseline, because CRW requires additional

calculations to identify fragmented blocks. It is expected that the computational cost of MERW is

higher than CRW, because MERW needs more calculations in order to identify the optimal fragment.

However, even though the calculation overhead of MERW is high in the three methods, the

calculation overhead required by MERW is still small. The highest calculation overhead of MERW

in all backups is only 176ms (backup id11), which can be ignored.

Baseline severely degrades the performance of data recovery. In response to this problem, CRW

improves the data recovery performance by coarsely identifying and rewriting fragmented blocks, but

also reduces a certain deduplication ratio. CRW's identification of fragmented blocks is not accurate

enough, resulting in rewriting unnecessary data blocks, not only wasting storage space (such as disks),

but also limiting the performance of data recovery. In response to this problem, we proposed MERW,

which accurately identified fragmented blocks and rewritten the optimal fragmented blocks, which

ultimately improved not only the performance of data recovery, but also the deduplication ratio.

Journal of computer science and software applications

https://www.mfacademia.org/

ISSN:2377-0430

Vol. 4, No. 2, 2024

5

4. Conclusion

In disaster recovery systems, data recovery performance is especially important. The fragment blocks

identified by the current rewrite methods are not accurate enough. The rewritten fragment blocks are

not optimal fragment blocks, so their improvement of data recovery performance and deduplication

ratio are limited. In response to these problems, in this pepar, we propose MERW. MERW selects the

optimal fragmented blocks through a large number of calculations, and rewrites these optimal

fragmented blocks, which makes up for the shortcomings of traditional methods of rewriting

unnecessary fragmented blocks, thereby not only improving data recovery performance, but also

improving the deduplication ratio. We conducted a comprehensive experiments. Experimental results

show that, compared to Baseline and CRW, MERW improves the data recovery performance by 48%

and 5.7%, respectively. Compared to CRW, MERW improves the deduplication ratio by 6%.

References

[1] Quinlan S, Dorward S. Venti: A New Approach to Archival Storage[C]//FAST. 2002, 2: 89-101.

[2] Rabin M O. Fingerprinting by random polynomials[J]. Technical report, 1981.

[3] Zhu B, Li K, Patterson R H. Avoiding the Disk Bottleneck in the Data Domain Deduplication

File System[C]//Fast. 2008, 8: 1-14.

[4] Meister D, Kaiser J. Block locality caching for data deduplication[C]//Proceedings of the 6th

International Systems and Storage Conference. 2013: 1-12.

[5] Cao Z, Liu S, Wu F, et al. Sliding look-back window assisted data chunk rewriting for improving

deduplication restore performance[C]//17th {USENIX} Conference on File and Storage
Technologies ({FAST} 19). 2019: 129-142.

[6] Nam Y J, Park D, Du D H C. Assuring demanded read performance of data deduplication storage

with backup datasets[C]//2012 IEEE 20th International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems. IEEE, 2012: 201-208.

[7] Lillibridge M, Eshghi K, Bhagwat D. Improving restore speed for backup systems that use inline

chunk-based deduplication[C]//Presented as part of the 11th {USENIX} Conference on File and

Storage Technologies ({FAST} 13). 2013: 183-197.

[8] Fu M, Feng D, Hua Y, et al. Accelerating restore and garbage collection in deduplication-based

backup systems via exploiting historical information[C]//2014 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 14). 2014: 181-192.

[9] Fu M, Feng D, Hua Y, et al. Design tradeoffs for data deduplication performance in backup

workloads[C]//13th {USENIX} Conference on File and Storage Technologies ({FAST} 15).

2015: 331-344.

[10] Lillibridge M, Eshghi K, Bhagwat D. Improving restore speed for backup systems that use inline

chunk-based deduplication[C]//Presented as part of the 11th {USENIX} Conference on File and

Storage Technologies ({FAST} 13). 2013: 183-197.

[11] http://tracer.filesystems.org/..

[12] Tarasov V, Mudrankit A, Buik W, et al. Generating realistic datasets for deduplication

analysis[C]//Presented as part of the 2012 {USENIX} Annual Technical Conference
({USENIX}{ATC} 12). 2012: 261-272.

http://tracer.filesystems.org/

	Abstract:
	Keywords:
	1. Introduction
	2. MERW
	3. Evaluation
	4. Conclusion
	References

